Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7755, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012235

RESUMO

Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.


Assuntos
Esfingomielina Fosfodiesterase , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Simulação de Acoplamento Molecular , Ceramidas/metabolismo
2.
Sci Adv ; 9(41): eadg4479, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831762

RESUMO

ClC-6 is a late endosomal voltage-gated chloride-proton exchanger that is predominantly expressed in the nervous system. Mutated forms of ClC-6 are associated with severe neurological disease. However, the mechanistic role of ClC-6 in normal and pathological states remains largely unknown. Here, we present cryo-EM structures of ClC-6 that guided subsequent functional studies. Previously unrecognized ATP binding to cytosolic ClC-6 domains enhanced ion transport activity. Guided by a disease-causing mutation (p.Y553C), we identified an interaction network formed by Y553/F317/T520 as potential hotspot for disease-causing mutations. This was validated by the identification of a patient with a de novo pathogenic variant p.T520A. Extending these findings, we found contacts between intramembrane helices and connecting loops that modulate the voltage dependence of ClC-6 gating and constitute additional candidate regions for disease-associated gain-of-function mutations. Besides providing insights into the structure, function, and regulation of ClC-6, our work correctly predicts hotspots for CLCN6 mutations in neurodegenerative disorders.


Assuntos
Canais de Cloreto , Doenças Neurodegenerativas , Humanos , Canais de Cloreto/química , Canais de Cloreto/genética , Transporte de Íons , Mutação , Doenças Neurodegenerativas/genética , Relação Estrutura-Atividade
3.
Nature ; 527(7576): 64-9, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26390154

RESUMO

Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 Å. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Animais , Membrana Celular/metabolismo , Condutividade Elétrica , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Camundongos , Modelos Moleculares , Maleabilidade , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...