Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(1): 398-410, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574335

RESUMO

Soybean is a major source of high-quality protein for humans and animals. The content of sulfur-containing amino acids (SAA) in soybean is insufficient, which has become the main factor limiting soybean nutrition. In this study, we used the high-density genetic maps derived from Guizao 1 and Brazil 13 to evaluate the quantitative trait loci of cysteine (Cys), methionine (Met), SAA, glycinin (7S), ß-conglycinin (11S), ratio of glycinin to ß-conglycinin (RGC), and protein content (PC). In genetic map linkage analysis, the major and stable 44 QTLs were detected, which shared nine bin intervals. Among them, the bin interval (bin157-bin160) on chromosome 5 was detected in multiple environments as a stable QTL, which was linked to 11S, 7S, RGC, and SSA. Based on the analysis of bioinformatics and RNA-sequencing data, 16 differentially expressed genes (DEGs) within these QTLs were selected as candidate genes. These results will help to elucidate the genetic mechanism of soybean SAA-related traits and provide the basis for the gene mining of sulfur-containing amino acids.


Assuntos
Glycine max , Locos de Características Quantitativas , Humanos , Glycine max/genética , Glycine max/metabolismo , Aminoácidos/metabolismo , Mapeamento Cromossômico/métodos , Fenótipo , Enxofre/metabolismo , Sementes/química
2.
Phys Rev E ; 98(1-1): 012304, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110862

RESUMO

The synchronization behavior of networked chaotic oscillators with periodic coupling is investigated. It is observed in simulations that the network synchronizability could be significantly influenced by tuning the coupling frequency, even making the network alternating between the synchronous and nonsynchronous states. Using the master stability function method, we conduct a detailed analysis of the influence of coupling frequency on network synchronizability and find that the network synchronizability is maximized at some characteristic frequencies comparable to the intrinsic frequency of the local dynamics. Moreover, it is found that as the amplitude of the coupling increases, the characteristic frequencies are gradually decreased. Using the finite-time Lyapunov exponent technique, we investigate further the mechanism for the maximized synchronizability and find that at the characteristic frequencies the power spectrum of the finite-time Lyapunov exponent is abruptly changed from the localized to broad distributions. When this feature is absent or not prominent, the network synchronizability is less influenced by the periodic coupling. Our study shows the efficiency of finite-time Lyapunov exponent in exploring the synchronization behavior of temporally coupled oscillators and sheds lights on the interplay between the system dynamics and structure in general temporal networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...