Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 214, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393350

RESUMO

Pectolinarigenin (PEC), an active compound isolated from traditional herbal medicine, has shown potential anti-tumor properties against various types of cancer cells. However, its mechanism of action in bladder cancer (BLCA), which is one of the fatal human carcinomas, remains unexplored. In this study, we first revealed that PEC, as a potential DNA topoisomerase II alpha (TOP2A) poison, can target TOP2A and cause significant DNA damage. PEC induced G2/M phase cell cycle arrest via p53 pathway. Simultaneously, PEC can perform its unique function by inhibiting the late autophagic flux. The blocking of autophagy caused proliferation inhibition of BLCA and further enhanced the DNA damage effect of PEC. In addition, we proved that PEC could intensify the cytotoxic effect of gemcitabine (GEM) on BLCA cells in vivo and in vitro. Summarily, we first systematically revealed that PEC had great potential as a novel TOP2A poison and an inhibitor of late autophagic flux in treating BLCA.

2.
Onco Targets Ther ; 13: 9059-9069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982295

RESUMO

PURPOSE: Bladder cancer is one of the leading causes of cancer death all over the world, and half of patients are diagnosed at advanced stages with poor therapeutic response. Thus, developing new biomarkers for bladder cancer diagnosis and prognosis is urgently needed. MATERIALS AND METHODS: Bioinformatic and gene ontology (GO) analysis were employed to screen highly upregulated and secretory tumor markers in the TCGA BLCA cohort. IHC in tissue microarray and ELISA in cancer cell culture medium were used to validate the expression of putative biomarkers in bladder cancer. Bisulfite sequencing was used to detect DNA methylation status in the promoter of putative genes. RESULTS: In this study, MMP11 is first identified as one of the most differentially expressed genes (DEGs) in bladder cancer by meta-analysis in a TCGA bladder cancer cohort. The strong upregulation of MMP11 is confirmed at protein levels in both bladder cancer patients and cell lines. Mechanistic studies reveal that MMP11 promoter hypomethylation, but not genomic amplification or mutation, accounts for its enhanced expression in bladder cancer both in vitro and in vivo. Moreover, clinicopathological analysis indicates that MMP11 upregulation is associated with the tumor progression and poor survival in bladder cancer patients. DISCUSSION: These findings suggest that MMP11, as a secretory protein, is a promising biomarker for diagnosis and prognosis in bladder cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...