Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 35(6): 1049-1059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459138

RESUMO

PURPOSE: This study aimed to apply a newly developed semi-automatic phantom-less QCT (PL-QCT) to measure proximal humerus trabecular bone density based on chest CT and verify its accuracy and precision. METHODS: Subcutaneous fat of the shoulder joint and trapezius muscle were used as calibration references for PL-QCT BMD measurement. A self-developed algorithm based on a convolution map was utilized in PL-QCT for semi-automatic BMD measurements. CT values of ROIs used in PL-QCT measurements were directly used for phantom-based quantitative computed tomography (PB-QCT) BMD assessment. The study included 376 proximal humerus for comparison between PB-QCT and PL-QCT. Two sports medicine doctors measured the proximal humerus with PB-QCT and PL-QCT without knowing each other's results. Among them, 100 proximal humerus were included in the inter-operative and intra-operative BMD measurements for evaluating the repeatability and reproducibility of PL-QCT and PB-QCT. RESULTS: A total of 188 patients with 376 shoulders were involved in this study. The consistency analysis indicated that the average bias between proximal humerus BMDs measured by PB-QCT and PL-QCT was 1.0 mg/cc (agreement range - 9.4 to 11.4; P > 0.05, no significant difference). Regression analysis between PB-QCT and PL-QCT indicated a good correlation (R-square is 0.9723). Short-term repeatability and reproducibility of proximal humerus BMDs measured by PB-QCT (CV: 5.10% and 3.41%) were slightly better than those of PL-QCT (CV: 6.17% and 5.64%). CONCLUSIONS: We evaluated the bone quality of the proximal humeral using chest CT through the semi-automatic PL-QCT system for the first time. Comparison between it and PB-QCT indicated that it could be a reliable shoulder BMD assessment tool with acceptable accuracy and precision. This study developed and verify a semi-automatic PL-QCT for assessment of proximal humeral bone density based on CT to assist in the assessment of proximal humeral osteoporosis and development of individualized treatment plans for shoulders.


Assuntos
Densidade Óssea , Osso Esponjoso , Úmero , Tomografia Computadorizada por Raios X , Humanos , Densidade Óssea/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Idoso , Reprodutibilidade dos Testes , Úmero/diagnóstico por imagem , Úmero/fisiologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia , Osso Esponjoso/fisiologia , Algoritmos , Imagens de Fantasmas , Adulto , Osteoporose/fisiopatologia , Osteoporose/diagnóstico por imagem , Idoso de 80 Anos ou mais
3.
Biomater Adv ; 149: 213394, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001309

RESUMO

Infection prevention and bone-implant integration remain major clinical challenges. Silver nanoparticle (AgNPs) bone-implant coatings have received extensive attention. Balancing the toxicity and antibacterial properties of AgNP coatings has become a significant problem. In this study, inspired by the structure of the ant-nest, a polyetherimide (PEI) coating with ant-nest structure was prepared, aiming to realize the structural modification of the AgNPs coating. AgNPs were loaded in the inner porous area of the PEI ant-nest coating, avoiding direct contact between AgNPs and cells. The nanopores on the surface of the coating ensured the orderly release of silver ions. SEM, FTIR, XPS, and XRD experiments confirmed that the PEI ant-nest coating was successfully prepared. Interestingly, in the PEI ant-nest coating, Ag+ showed a steady increase in the release trend within 28 days, and there was no early burst release phenomenon. In -vivo experiments showed a good control effect for local infection. In order to improve the osteogenic properties of the materials, 45S5 bioactive glasses (BG) were loaded to achieve further osseointegration. In general, this natural ant-nest-inspired surface modification coating for orthopedic prostheses provides a new strategy for balancing the antibacterial and toxic effects of AgNP coatings.


Assuntos
Formigas , Membros Artificiais , Nanopartículas Metálicas , Animais , Prata/farmacologia , Biomimética , Osseointegração , Antibacterianos/farmacologia
4.
Int J Biol Macromol ; 239: 124209, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972826

RESUMO

Removing residual tumor cells around bone tissue and promoting bone defect repair pose significant challenges after osteosarcoma resection. Herein, we designed an injectable multifunctional hydrogel therapeutic platform for synergistic photothermal chemotherapy of tumors and promoting osteogenesis. In this study, the black phosphorus nanosheets (BPNS) and doxorubicin (DOX) were encapsulated in an injectable chitosan-based hydrogel (BP/DOX/CS). The BP/DOX/CS hydrogel exhibited excellent photothermal effects under NIR irradiation due to incorporating BPNS. The prepared hydrogel has good drug-loading capacity and can continuously release DOX. In addition, K7M2-WT tumor cells are effectively eliminated under the combined effect of chemotherapy and photothermal stimulation. Furthermore, the BP/DOX/CS hydrogel has good biocompatibility and promotes osteogenic differentiation of MC3T3-E1 cells by releasing phosphate. In vivo results also confirmed that the BP/DOX/CS hydrogel can be injected at the tumor site to eliminate the tumor efficiently without systemic toxicity. This easily prepared multifunctional hydrogel with a synergistic photothermal-chemotherapy effect has excellent potential for clinically treating bone-related tumors.


Assuntos
Neoplasias Ósseas , Hidrogéis , Humanos , Osteogênese , Fósforo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral
5.
Colloids Surf B Biointerfaces ; 219: 112817, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084513

RESUMO

The bonding strength of the bone-titanium (Ti) implant interface is critical for patients undergoing joint replacement. However, current bone adhesives used in clinic have shortcomings, such as biological inertness, cytotoxicity, and lack of osteogenic ability. In this study, a simple and low-cost hydrogel-based bone adhesive was prepared to improve the osseointegration ability and anti-infection ability of the bone-implant interface. A multifunctional hydrogel was prepared by incorporating nano-hydroxyapatite (HA) on polyethyleneimine (PEI) and polyacrylic acid (PAA) (PEI/PAA-HA). It was shown that PEI/PAA-HA hydrogel exhibited good self-healing and strong adhesive ability. The adhesive strengths of bone-Ti and Ti-Ti were measured as 2.30 ± 0.15 MPa and 1.07 ± 0.07 MPa, respectively. Vancomycin (VAN) was loaded into the PEI/PAA-HA hydrogel (PEI/PAA-HA-VAN) via a simple immersion method. The PEI/PAA-HA-VAN showed excellent antibacterial effect by sustained release of VAN. In addition, the PEI/PAA-HA-VAN hydrogel exhibited excellent cytocompatibility promoting the expression of osteogenic genes and the deposition of mineralized matrix. Collectively, this strong adhesive hydrogel showed great potential in enhancing bone-implant interface fixation.


Assuntos
Interface Osso-Implante , Hidrogéis , Humanos , Hidrogéis/farmacologia , Durapatita/farmacologia , Osteogênese , Osseointegração
6.
Int J Nanomedicine ; 15: 2045-2058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273701

RESUMO

Bone regeneration remains a great clinical challenge. Two-dimensional materials, especially graphene and its derivative graphene oxide, have been widely used for bone regeneration. Since its discovery in 2014, black phosphorus (BP) nanomaterials including BP nanosheets and BP quantum dots have attracted considerable scientific attention and are considered as prospective graphene substitutes. BP nanomaterials exhibit numerous advantages such as excellent optical and mechanical properties, electrical conductivity, excellent biocompatibility, and good biodegradation, all of which make them particularly attractive in biomedicine. In this review, we comprehensively summarize recent advances of BP-based nanomaterials in bone regeneration. The advantages are reviewed, the different synthesis methods of BP are summarized, and the applications to promote bone regeneration are highlighted. Finally, the existing challenges and perspectives of BP in bone regeneration are briefly discussed.


Assuntos
Regeneração Óssea/fisiologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Fósforo/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea/efeitos dos fármacos , Grafite/química , Humanos , Pontos Quânticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...