Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402882, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773890

RESUMO

High carrier separation efficiency and rapid surface catalytic reaction are crucial for enhancing catalytic CO2 photoreduction reaction. Herein, integrated surface decoration strategy with oxygen vacancies (Ov) and anchoring CuxO (1 < x < 2) nanodots below 10 nm is realized on Bi2MoO6 for promoting CO2 photoreduction performance. The charge interaction between Ov and anchored CuxO enables the formation of enhanced internal electric field, which provides a strong driving force for accelerating the separation of photocharge carriers on the surface of Bi2MoO6 (ηsurf ≈71%). They can also cooperatively reduce the surface work function of Bi2MoO6, facilitating the migration of carrier to the surface. Meanwhile, surface-integrated Ov and CuxO nanodots allowing dual catalytic sites strengthens the adsorption and activation CO2 into *CO2 over Bi2MoO6, considerably boosting the progression of CO2 conversion process. In the absence of co-catalyst or sacrificial agent, Bi2MoO6 with Ov and CuxO nanodots achieves a photocatalytic CO generation rate of 12.75 µmol g-1 h-1, a remarkable increase of over ≈15 times that of the original counterpart. This work provides a new idea for governing charge movement behaviors and catalytic reaction thermodynamics on the basis of synergistic improvement of electric field and active sites by coupling of the internal defects and external species.

2.
Small ; 19(5): e2203559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417582

RESUMO

Photocatalytic CO2 reduction is severely limited by the rapid recombination of photo-generated charges and insufficient reactive sites. Creating electric field and defects are effective strategies to inhibit charge recombination and enrich catalytic sites, respectively. Herein, a coupled strategy of ferroelectric poling and cationic vacancy is developed to achieve high-performance CO2 photoreduction on ferroelectric Bi2 MoO6 , and their interesting synergy-compensation relationship is first disclosed. Corona poling increases the remnant polarization of Bi2 MoO6 to enhance the intrinsic electric field for promoting charge separation, while it decreases the CO2 adsorption. The introduced Mo vacancy (VMo ) facilitates the adsorption and activation of CO2 , and surface charge separation by creating local electric field. Unfortunately, VMo largely reduces the remnant polarization intensity. Coupling poling and VMo not only integrate their advantages, resulting in an approximately sevenfold increased surface charge transfer efficiency, but also compensate for their shortcomings, for example, VMo largely alleviates the negative effects of ferroelectric poling on CO2 adsorption. In the absence of co-catalyst or sacrificial agent, the poled Bi2 MoO6 with VMo exhibits a superior CO2 -to-CO evolution rate of 19.75 µmol g-1 h-1 , ≈8.4 times higher than the Bi2 MoO6 nanosheets. This work provides new ideas for exploring the role of polarization and defects in photocatalysis.

3.
J Colloid Interface Sci ; 508: 387-395, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28843928

RESUMO

The black-pearl reduced graphene oxide-sodium alginate (rGO-SA) hydrogel microspheres are prepared by the external emulsification and thermal reduction method, which are characterized by scanning electron microscope (SEM) and X-ray Diffraction (XRD). Sodium alginate (SA) serves as a template to form a 3D porous network structure, which can prevent the agglomeration and restacking of rGO sheets efficiently. The size of hydrogel microsphere can be controlled by adjusting the size of the liquid drop. The effects of rGO content (wt%), contact time, initial concentration of phenol, adsorption temperature and adsorption dose on the adsorption capacity of rGO-SA microspheres are investigated. The kinetics and isotherm data are well described by the pseudo-second-order kinetic model and the Langmuir equation, respectively. Thermodynamic results demonstrate the spontaneous and endothermic nature of adsorption. This rGO-SA microsphere exhibits the favorable adsorption performance for phenol, BPA and tetracycline. The rGO-SA microsphere might be a potential candidate for efficient adsorbents in water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...