Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672906

RESUMO

Amphioctopus neglectus is a species of octopus that is favored by consumers due to its rich nutrient profile. To investigate the influence of different thawing methods on the quality of octopus meat, we employed four distinct thawing methods: air thawing (AT), hydrostatic thawing (HT), flowing water thawing (FWT), and microwave thawing (MT). We then explored the differences in texture, color, water retention, pH, total volatile basic nitrogen (TVB-N), total sulfhydryl content, Ca2+-ATPase activity, and myofibrillar protein, among other quality indicators in response to these methods, and used a low-field nuclear magnetic resonance analyzer to assess the water migration that occurred during the thawing process. The results revealed that AT had the longest thawing time, leading to oxidation-induced protein denaturation, myofibrillar protein damage, and a significant decrease in water retention. Additionally, when this method was utilized, the content of TVB-N was significantly higher than in the other three groups. HT, to a certain extent, isolated the oxygen in the meat and thus alleviated protein oxidation, allowing higher levels of Ca2+-ATPase activity, sulfhydryl content, and springiness to be maintained. However, HT had a longer duration: 2.95 times that of FWT, resulting in a 9.84% higher cooking loss and a 28.21% higher TVB-N content compared to FWT. MT had the shortest thawing time, yielding the lowest content of TVB-N. However, uneven heating and in some cases overcooking occurred, severely damaging the protein structure, with a concurrent increase in thawing loss, W value, hardness, and shear force. Meanwhile, FWT improved the L*, W* and b* values of octopus meat, enhancing its color and water retention. The myofibrillar protein (MP) concentration was also the highest after FWT, with clearer subunit bands in SDS-PAGE electrophoresis, indicating that less degradation occurred and allowing greater springiness, increased Ca2+-ATPase activity, and a higher sulfhydryl content to be maintained. This suggests that FWT has an inhibitory effect on oxidation, alleviating protein oxidation degradation and preserving the quality of the meat. In conclusion, FWT outperformed the other three thawing methods, effectively minimizing adverse changes during thawing and successfully maintaining the quality of octopus meat.

2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542171

RESUMO

In blueberry (Vaccinium corymbosum L.), a perennial shrub, flower bud initiation is mediated by a short-day (SD) photoperiod and buds bloom once the chilling requirement is satisfied. A plant factory with artificial lighting (PFAL) is a planting system that can provide a stable and highly efficient growing environment for blueberry production. However, the characteristics of bud differentiation of blueberry plants inside PFAL systems are poorly understood. To better understand flower bud initiation and the flowering mechanism of blueberry in PFAL systems, the anatomical structure of apical buds under SD conditions in a PFAL system was observed using the southern highbush cultivar 'Misty' and a transcriptomic analysis was performed to identify the candidate flowering genes. The results indicated that the apical bud of 'Misty' differentiated gradually along with SD time course and swelled obviously when chilling was introduced. A total of 39.28 Gb clean data were generated, and about 20.31-24.11 Mb high-quality clean reads were assembled, yielding a total of 17370 differentially expressed genes (DEGs), of which 9637 were up-regulated and 7733 were down-regulated. Based on the functional annotation, 26 DEGs were identified including 20 flowering-related and 6 low-temperature DEGs, out of which the expressive level of four flowering-related DEGs (VcFT2, VcFPA, VcFMADS1, and VcCOP1) and two low-temperature-induced DEGs (VcTIL-1 and VcLTI 65-like) were confirmed by qRT-PCR with a good consistency with the pattern of transcriptome. Functional analysis indicated that VcFT2 was highly conserved with nuclear and cytoplasmic subcellular localization and was expressed mainly in blueberry leaf tissue. In Arabidopsis, ectopic overexpression of VcFT2 results in an early flowering phenotype, indicating that VcFT2 is a vital regulator of the SD-mediated flowering pathway in blueberry. These results contribute to the investigation of photoperiod-mediated flowering mechanisms of blueberry in PFAL systems.


Assuntos
Mirtilos Azuis (Planta) , Transcriptoma , Mirtilos Azuis (Planta)/genética , Iluminação , Flores/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
3.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202846

RESUMO

Protamine is a cationic peptide derived from fish sperm and has several important functional properties: antibacterial properties, acting as a carrier for injectable insulin and as a heparin antagonist, combatting fatigue, etc. Thus, it has been widely used in medicinal applications and food products. Cultured Takifugu flavidus is a type of pufferfish with a delicious taste that is popular in China, and its production is increasing significantly. Therefore, protamine was extracted via acid extraction from the sperm of Takifugu flavidus and further isolated and purified via sephadex gel chromatography, ion exchange chromatography, and desalination chromatography. Furthermore, the physicochemical properties of protamine were investigated. The results showed that the sperm of the cultured T. flavidus were non-toxic, and the extracted and purified protamine had high contents of arginine (36.90%) and lysine (27.02%), respectively. The secondary structure of protamine was mainly ß-folded and irregularly curled. Additionally, protamine exhibited high thermal stability with a denaturation temperature of 176 °C. This study would provide a theoretical basis for the structural analysis, bioactivity, and resource development of pufferfish protamine and help to promote the development of the pufferfish industry.


Assuntos
Protaminas , Takifugu , Masculino , Animais , Sêmen , Antagonistas de Heparina , Antibacterianos
4.
Biomimetics (Basel) ; 8(3)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37504171

RESUMO

Fiber-reinforced composites are an ideal high-performance composite material made from a combination of high-strength continuous fibers and a polymer matrix. Compared to short cut fibers, continuous long strand fibers can improve the mechanical properties of fiber composites more effectively. Herein, continuous aramid fiber-reinforced PLA filaments with fiber centering were prepared by modifying the outlet design of a desktop-grade thermoplastic single-screw melt extruder. Inspired by the cross-laminated structure of a beetle's mandible fibers, a biomimetic structure composite was printed, which demonstrates a significant influence on the mechanical properties. The G-code printing program was developed, and the microstructure of the fracture surface of the specimen was analyzed. The uniform and orderly arrangement of aramid fibers within the PLA resin-based 3D-printed specimen was found. Consequentially, the bionic composites exhibits a 12% increase in tensile strength and a 5% increase in impact toughness, confirming the feasibility of utilizing continuous 3D printing to manufacture long bundles of aramid fiber composite filaments for enhanced mechanical performances.

5.
Front Bioeng Biotechnol ; 11: 1223339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492800

RESUMO

Purpose: Insufficient osseointegration and implant-associated infection are major factors in the failure of Ti-based implants, thus spurring scientists to develop multifunctional coatings that are better suited for clinical requirements. Here, a new biomimetic micro/nanoscale topography coating combined with antibacterial copper was simultaneously designed for Ti-based implant surfaces by adopting a hybrid approach combining plasma electrolytic oxidation and hydrothermal treatment. Results: The biological interactions between this biofunctionalized material interface and stem cells promoted cellular adhesion and spreading during initial attachment and supported cellular proliferation for favorable biocompatibility. Bone marrow mesenchymal stem cells (BMMSCs) on the coating displayed enhanced cellular mineral deposition ability, higher alkaline phosphatase activity, and upregulated expression of osteogenic-related markers without the addition of osteoinductive chemical factors, which improved osseointegration. More interestingly, this new coating reduced the viability of oral pathogens (Fusobacterium nucleatum and Porphyromonas gingivalis)-the primary causes of implant-associated infections as indicated by damage of cellular structures and decreased population. This is the first study investigating the antibacterial property of dental implants modified by a hybrid approach against oral pathogens to better mimic the oral environment. Conclusion: These findings suggest that biofunctionalization of the implant coating by surface modification methods and the incorporation of antibacterial copper (Cu) offer superior osteogenesis capability and effective antibacterial activity, respectively. These strategies have great value in orthopedic and dental implant applications.

6.
Front Plant Sci ; 14: 1137104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950356

RESUMO

Sugar content is an important trait of fruits. The genetic background of fruits can affect their sugar content in different cultivars. The quantitative trait loci and genes related to sugar content during fruit ripening remain unclear. In this study, we performed quantitative trait locus (QTL) mapping of sugar content. Two QTLs (qSugar-LG6-Chr7 and qSugar-LG12-Chr3) were identified based on their total sugar contents. A total of 577 and 519 genes were annotated around these two QTL loci. The contents of fructose, sorbitol, glucose, and sucrose were measured at six time points in four cultivars before fruit maturation, including two sweet cultivars ("Zaoshengxinshui" and "ZQ65") and two general cultivars ("Qiushui" and "ZQ82"). In sweet cultivars, sucrose and fructose accumulate substantially, and sorbitol content decreases significantly during fruit ripening. A transcriptome analysis identified 125 upregulated and 222 downregulated differentially expressed genes (DEGs) in sweet cultivars. Two sucrose transport genes (PpSUT, LOC103964096, and LOC103940043) were negatively correlated with sugar content. A weighted gene co-expression network analysis showed that two genes, sorbitol dehydrogenase (PpSDH, LOC103960512 and LOC103960513), around the locus of qSugar-LG6-Chr7 were negatively co-expressed with the total sugar content, which was downregulated in the sweet cultivars. PpSDH and PpSUT may play important roles in regulating sugar content during pear ripening. Transcriptome analysis also revealed that some DEGs were related to sugars (PpS6PDH and ATP-PpPFK), hormones (PpARG7), and transcription factors (PpEMB1444, PpCYP734A1, and PpWRKY50). In conclusion, this study provides new insights into the molecular mechanisms associated with sugar content in the fruit ripening of Pyrus pyrifolia.

7.
Polymers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201759

RESUMO

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted considerable attention due to the excellent optoelectronic properties of perovskite materials. The energy consumption and high cost issues of metal electrode evaporation should be addressed before large-scale manufacturing and application. We developed an effective metal electrode evaporation procedure for the fabrication of high-efficiency planar heterojunction (PHJ) PSCs, with an inverted device structure of glass/indium tin oxide (ITO)/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA)/perovskite/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/(E)-ß-caryophyllene (BCP)/Ag. The effect of the evaporation rate for an evaporator with a small-volume metal cavity on the performance of PHJ-PSC devices was investigated systematically. Through controlling the processes of Ag electrode evaporation, the charge dynamics of the devices were studied by analyzing their charge recombination resistance and lifetime, as well as their defect state density. Our findings reveal that the evaporation rate of an evaporator with a small cavity is favorable for the performance of PHJ-PSCs. As a result, PHJ-PSCs fabricated using a very thin, non-doped PTAA film exhibit photoelectric conversion efficiency (PCE) of 19.21%, with an open-circuit voltage (Voc) of 1.132 V. This work showcases the great potential of rapidly evaporating metal electrodes to reduce fabrication costs, which can help to improve the competitiveness in the process of industrialization.

8.
Front Plant Sci ; 13: 1073332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570935

RESUMO

Introduction: Blueberry (Vaccinium corymbosum L.) is a popular fruit with an abundance of anthocyanins in its leaves and fruits. Light is one of the pivotal environmental elements that affects plant growth and development, but the regulatory mechanism between light quality and anthocyanin formation is poorly understood. Methods: An integrated transcriptome and metabolome analysis was performed to investigate the effects of white (control), blue (B), red (R), and red/blue (60R/40B) light on blueberry growth and reveal the potential pathway controlling anthocyanin biosynthesis in blueberry leaves. Results: The anthocyanin content was significantly improved by the blue and red/blue light when compared with white light, whereas there was a significant reduction in the photosynthesis under the blue light, showing an inverse trend to that of anthocyanin accumulation. Transcriptomic analysis resulted in the assembly of 134,709 unigenes. Of these, 22 were differentially expressed genes (DEGs) that participate in the anthocyanin biosynthesis pathway, with the majority being significantly up-regulated under the blue light. Most of the photosynthesis-related genes that were down-regulated were expressed during anthocyanin accumulation. Targeted metabolome profiling identified 44 metabolites associated with anthocyanin biosynthesis. The contents of most of these metabolites were higher under blue light than the other light conditions, which was consistent with the transcriptome results. The integrated transcriptome and metabolome analysis suggested that, under blue light, leucoanthocyanidin dioxygenase (LDOX), O-methyltransferase (OMT), and UDP-glucose flavonoid glucosyltransferase (UFGT) were the most significantly expressed, and they promoted the synthesis of cyanidin (Cy), malvidin (Mv), and pelargonidin (Pg) anthocyanidins, respectively. The expression levels of dihydroflavonol 4-reductase (DFR) and OMT, as well as the accumulation of delphinidin (Dp), peonidin (Pn), and petunidin (Pt), were significantly increased by the red/blue light. Discussion: The blue and red/blue lights promoted anthocyanin biosynthesis via inducing the expression of key structural genes and accumulation of metabolites involved in anthocyanin synthesis pathway. Moreover, there was a possible feedback regulating correlation between anthocyanin biosynthesis and photosynthesis under different light qualities in blueberry leaves. This study would provide a theoretical basis for elucidating the underlying regulatory mechanism of anthocyanin biosynthesis of V. corymbosum.

9.
Front Plant Sci ; 13: 1078085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582646

RESUMO

Introduction: Blueberries have a high antioxidant content and are produced as healthy food worldwide. Long non-coding RNAs (lncRNAs) are a type of regulatory RNAs that play a variety of roles in plants. Nonetheless, information on lncRNAs and their functions during blueberry fruit development is scarce in public databases. Methods: In the present study, we performed genome-wide identification of lncRNAs in a southern highbush blueberry using strand-specific RNA sequencing (ssRNA-Seq). Differentially expressed lncRNAs (DE-lncRNAs) and their potential target genes were analyzed at four stages of fruit development. Cis-regulatory DE-lncRNAs were predicted using co-localization analysis. Results: These findings included a total of 25,036 lncRNAs from 17,801 loci. Blueberry lncRNAs had shorter transcript lengths, smaller open reading frame (ORF) sizes, fewer exons, and fewer isoforms than protein-coding RNAs, as well as lower expression levels and higher stage-specificity during fruit development. A total of 105 DE-lncRNAs were identified among the comparison group of PAD vs. CUP, 443 DE-lncRNAs were detected when comparing CUP with PINK fruits, and 285 DE-lncRNAs were revealed when comparing PINK and BLUE fruits. According to Kyoto Encyclopedia of Genes and Genomes annotation, target genes of DE-lncRNAs were primarily enriched in the "Autophagy-other", "DNA replication", "Endocytosis", 'photosynthesis' and 'chlorophyll metabolism' pathways, suggesting that lncRNAs may pay potential roles in fruit expansion and ripening. Moreover, several lncRNAs have been proposed as cis-regulators of the key genes involved in flavonoid biosynthesis. MSTRG.107242.6, and its putative target gene, BTB/POZ and TAZ domain-containing protein, might play critical roles in anthocyanin accumulation in blueberries. Discussion: These findings highlight the regulatory function of lncRNAs and aid in elucidating the molecular mechanism underlying blueberry fruit growth.

10.
J Mater Sci Mater Med ; 33(10): 69, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190565

RESUMO

Repeat firing produces uncertainty about stabilizing lithium disilicate glass-ceramic (LDGC) material properties, even though prolonged holding time can enhance the mechanical property of LDGC during a single firing cycle. However, the effect of prolonged holding time and repeat firing on the mechanical property and microstructure of LDGC is not fully understood. In the present study, three groups of LDGC material were created: (i) extension of holding time (7 vs. 14 vs. 28 min) at 780-800 °C; (ii) holding time extension (7 vs. 14 min) and dual sintering at 800-820 °C, respectively; (iii) dual sintering with prolonged holding time (7 vs. 14 min) at 820-840 °C. The nano-indenter test revealed that prolonged holding time (14 and 28 min) promoted the enhancement of LDGC hardness and Young's modulus. X-ray photoelectron spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy confirmed that prolonged holding time increased and stabilized LD phase in LDGC, as well as induced residual compressive stress. Scanning electron microscopy showed that prolonged holding time increased LD crystal grains homogeneously and facilitated LDGC to form dense interlocking structure without enlarging crystal size grains significantly. In contrast, LDGC that dual sintered alone at 820-840 °C possessed inferior mechanical properties, coupled with heterogeneous crystal phases, residual tensile stress, and melted crystals grains in the porous microstructure. Interestingly, these deteriorated properties of LDGC caused by dual sintering alone could be counteracted by prolonging the holding time. Nevertheless, the LDGC materials displayed an excellent biocompatibility throughout the study. This study identified that prolonged holding time during repeated firing cycles stabilized LD phase and crystal grain size of LDGC, thus enhanced the mechanical properties, which provided a new insight to extend the repeat fired restoration longevity of LDGC. Graphical abstract.


Assuntos
Cerâmica , Porcelana Dentária , Cerâmica/química , Módulo de Elasticidade , Teste de Materiais , Propriedades de Superfície
11.
Front Plant Sci ; 13: 1105591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36756233

RESUMO

The cultivated octoploid strawberry (Fragaria × ananassa) is an economically important fruit that is planted worldwide. The lysin motif (LysM) protein family is composed of the major class of plant pattern recognition receptors, which play important roles in sensing pathogen-associated molecular patterns (PAMPs), and subsequently triggers downstream plant immunity. In the present study, a comprehensive, genome-wide analysis of F. × ananassa LysM (FaLysM) genes was performed to investigate gene structures, phylogenic relationships, chromosome location, collinear relationships, transcription factor binding sites, and protein model analysis. We aimed to identify the LysM genes involved in the defense against plant pathogens. A total of 14 FaLysM genes were identified in the F. × ananassa genome and divided into 2 subgroups (LYP and LYK) on the basis of the phylogenetic analysis. The Ka/Ks ratio for the duplicated pair of most FaLysM genes was less than 1, which indicates that the selection pressure was mostly subject to the purifying selection during evolution. The protein model analysis revealed that FaLysM2-10 contain conserved mode of chitin binding, which suggest the potential role of FaLysM2-10 in pathogen perception and plant immunity. The RNA-Seq results showed the differential regulation of 14 FaLysM genes in response to Colletotrichum fructicola infection, implying the complex interaction between C. fructicola and strawberry. Knockout of candidate effector gene CfLysM2, which was previously proved to be highly expressed during C. fructicola infection, resulted in the up-regulation of six FaLysM genes (FaLysM1, FaLysM2, FaLysM3, FaLysM7, FaLysM8, and FaLysM12), indicating the competitive relations between CfLysM2 and FaLysM genes. Overall, this study provides fundamental information on the roles of LysM proteins in octoploid strawberry and its interaction with C. fructicola, laying useful information for further investigation on the C. fructicola-strawberry interaction and strawberry resistance breeding.

12.
Mol Plant Pathol ; 22(7): 817-828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951267

RESUMO

In this study, we used virus-mediated gene silencing technology and found that the HSP17.4 gene-silenced cultivar Sweet Charlie plants were more susceptible to Colletotrichum gloeosporioides than the wild-type Sweet Charlie, and the level of infection was even higher than that of the susceptible cultivar Benihopp. The results of differential quantitative proteomics showed that after infection with the pathogen, the expression of the downstream response genes NPR1, TGA, and PR-1 of the salicylic acid (SA) signalling pathway was fully up-regulated in the wild-type Sweet Charlie, and the expression of the core transcription factor MYC2 of the jasmonic acid (JA) pathway was significantly down-regulated. The expression of the proteins encoded by these genes did not change significantly in the HSP17.4-silenced Sweet Charlie, indicating that the expression of HSP17.4 activated the up-regulation of downstream signals of SA and inhibited the JA signal pathway. The experiments that used SA, methyl jasmonate, and their inhibitors to treat plants provide additional evidence that the antagonism between SA and JA regulates the resistance of strawberry plants to C. gloeosporioides.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença , Fragaria/genética , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Acetatos/metabolismo , Ciclopentanos/metabolismo , Fragaria/imunologia , Fragaria/microbiologia , Proteínas de Choque Térmico/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
13.
Nanoscale ; 12(46): 23682-23693, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33225337

RESUMO

Bismuth (Bi) is a promising anode candidate for sodium ion batteries (SIBs) with a high volumetric capacity (3765 mA h cm-3) and moderate working potential but suffers from large volume change (ca. 250%) during the sodiation/desodiation process, resulting in pulverization of the electrode, electrical contact loss, excessive accumulation of solid electrolyte interfaces, etc., devastating the cycling stability of the electrode seriously. Addressing this issue significantly relies on rational micro- and nano-structuring. Herein, we prepared a 3D multi-layered composite assembly of Bi/carbon heterojunctions with 0D bismuth nanospheres distributed and anchored on 2D nitrogen-doped carbon nanosheets (NCSs), using a preorganization strategy by taking full advantage of the strong complexation ability of Bi3+. The multi-layered composite assembly is periodic and close-packed, with Bi nanospheres <25 nm, carbon nanosheets ∼30 nm, and an average interlayer space of ∼75 nm. Such a specific architecture provides abundant electrochemically active surfaces and ion migration channels as the Bi nanospheres are attached to the 2D nitrogen-doped carbon nanosheets via a point-to-surface pattern. Moreover, the mono-layer Bi nanospheres oriented along the 2D-surface of NCSs are kinetically favorable for the recognition of Na+ by the active sites of Bi nanospheres as well as for avoiding the long distance migration of Na+ (external diffusion of Na+). Furthermore, thermodynamically, the small size and high surface energy of ultrasmall Bi nanospheres could contribute to high ion mobility (internal diffusion of Na+) and promote electrochemical reactions as well. The multi-layered composite assembly of Bi@NCSs (ML-Bi@NCSs) not only provides a robust 3D framework guaranteeing the whole structural stability but also ensures direct and full contact of each active nano-building block with electrolyte, thereby forming a high-throughput electron/ion transport system. When evaluated as the anode for SIBs, ML-Bi@NCSs deliver superior high-rate capability up to 30 A g-1 (specific capacity: 288 mA h g-1) and long-term cycling stability (capacity retention: 95.8% after 5000 cycles at 10 A g-1 and 90.6% after 10 000 cycles at 20 A g-1, respectively).

14.
J Mater Chem B ; 7(39): 5956-5965, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31524208

RESUMO

The periodontal structure is a particularly exquisite model of hierarchical spatial control of mineralization. Extracellular matrix control in the selective mineralization of the periodontium complex remains elusive since the extracellular matrix is a set of mineralization promoters and inhibitors. The phosphorylated proteins, which are ubiquitous in the extracellular matrix of the periodontium complex, are well-documented as primary factors in the regulation of tissue mineralization. Whether organic phosphates are key regulators in defining the interfaces between dentin, cementum, periodontal ligament and alveolar bone is an issue worthy of research. Here, we investigated the in vitro remineralization process of demineralized and dephosphorylated periodontal tissue sections. When exposed to a metastable mineralization solution, a large number of calcospherulites deposited on the surface of the dephosphorylated sections and the tissue selective mineralization were disrupted. Interestingly, on adding a dentin matrix protein-1 analogue named polyacrylic acid, the surface mineralization rate in the dephosphorylated periodontal complex reduced dramatically. In contrast, hierarchical mineralization was displayed by the demineralized section at the tissue collagen fibrillar levels in both alveolar bone and dentin regions. These results demonstrated that the organic phosphate could prevent surface mineral deposition, and the minerals could penetrate the collagen fibrils to initiate a selective and hierarchal tissue mineralization with the assistance of the dentin matrix protein-1 analogue in the periodontal complex. This study enhances our understanding of the mineralization discrepancy in the periodontal tissues, which will provide some insight into the development of biomaterials for the regeneration of soft-hard tissue interfaces.


Assuntos
Calcificação Fisiológica , Periodonto/metabolismo , Fosfatos/metabolismo , Resinas Acrílicas/química , Animais , Masculino , Fosfatos/química , Fosforilação , Ratos
15.
Mol Med Rep ; 14(6): 4975-4982, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27840938

RESUMO

Cementum is a periodontal support tissue that is directly connected to the periodontal ligament. It shares common traits with bone tissues, however, unlike bone, the cementum has a limited capacity for regeneration. As a result, following damage the cementum rarely, if ever, regenerates. Periodontal ligament cells (PDLCs) are able to differentiate into osteoblastic and cementogenic lineages according to specific local environmental conditions, including hypoxia, which is induced by inflammation or activation of the Wnt signalling pathway by local loading. The interactions between the Wnt signalling pathway and hypoxia during cementogenesis are of particular interest to improve the understanding of periodontal tissue regeneration. In the present study, osteogenic and cementogenic differentiation of PDLCs was investigated under hypoxic conditions in the presence and absence of Wnt pathway activation. Protein and gene expression of the osteogenic markers type 1 collagen (COL1) and runt­related transcription factor 2 (RUNX2), and cementum protein 1 (CEMP1) were used as markers for osteogenic and cementogenic differentiation, respectively. Wnt signalling activation inhibited cementogenesis, whereas hypoxia alone did not affect PDLC differentiation. However, hypoxia reversed the inhibition of cementogenesis that resulted from overexpression of Wnt signalling. Cross-talk between hypoxia and Wnt signalling pathways was, therefore, demonstrated to be involved in the differentiation of PDLCs to the osteogenic and cementogenic lineages. In summary, the present study suggests that the differentiation of PDLCs into osteogenic and cementogenic lineages is partially regulated by the Wnt signalling pathway and that hypoxia is also involved in this process.


Assuntos
Diferenciação Celular , Cementogênese , Hipóxia/metabolismo , Osteogênese , Ligamento Periodontal/citologia , Via de Sinalização Wnt , Adolescente , Adulto , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Adulto Jovem
16.
Front Plant Sci ; 7: 938, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446166

RESUMO

Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means.

17.
Gene ; 522(2): 177-83, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23566830

RESUMO

Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis.


Assuntos
Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Larix/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Larix/embriologia , Zíper de Leucina , MicroRNAs/genética , Ftalimidas/farmacologia , Proteínas de Plantas/genética , RNA Mensageiro/genética , Sementes/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-23416914

RESUMO

A new europium(III) complex i.e. Eu(ECTFBD)3PBI was synthesized, where ECTFBD and PBI are 4-(9-ethyl-9H-carbazol-3-yl)-1,1,1-trifluoro-4-oxobutan-2-olate anion and 2-(pyridin-2-yl)-1H-benzo[d]imidazole, respectively. Its IR, UV-Vis spectra, electrochemical, thermal properties as well as photoluminescent performances in solid state and in CH2Cl2 were investigated. Eu(ECTFBD)3PBI exhibited strong red emission without any emission from ECTFBD and PBI in solid state, but with a very weak emission from ECTFBD in CH2Cl2. We explored this difference of the luminesecences of Eu(ECTFBD)3PBI in solid state and in CH2Cl2 based on the excited triplet energy levels of ECTFBD and PBI.


Assuntos
Benzimidazóis/química , Complexos de Coordenação/química , Európio/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Ligantes , Medições Luminescentes , Modelos Moleculares , Piridinas/química , Termogravimetria
19.
Planta ; 237(4): 1047-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23232766

RESUMO

MicroRNAs (miRNAs) play essential roles in numerous developmental and metabolic processes in animals and plants. Although the framework of miRNA biogenesis and function is established, the mechanism of miRNA degradation or modification remains to be investigated in plants. Mature miRNAs may be truncated or added nucleotides to generate variants. A detailed analysis of small RNA deep sequencing data sets resulted in the cloning of a large number of variants derived from larch miRNAs. Many 5'- and/or 3'-end truncated versions of miRNAs suggested that larch miRNAs might be degraded through either 5'-3' or 3'-5'. The relative abundance of variants truncated from 3'-end was higher than that of 5'-end for most miRNAs. The addition of adenine, uridine, and cytidine to the 3'-end of miRNAs was globally present, and the subtle variability in isomiR abundance might be regulated and biologically meaningful. It is the first report for cytidine addition in plant, and our examination of published small RNA deep sequencing data sets of Arabidopsis, rice, and moss suggests that cytidine addition to miRNA 3'-end exists broadly in plants. In addition, the nucleotide addition might be associated with 3'-5' miRNA degradation. Our results provide valuable information for a genome-wide survey of miRNA truncation and modification in larch or plants.


Assuntos
Larix/metabolismo , MicroRNAs/metabolismo , Processamento de Terminações 3' de RNA , Genoma de Planta , Larix/genética
20.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 30(4): 417-9, 424, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-22934503

RESUMO

OBJECTIVE: To evaluate the effects of firing numbers on the total opening pore volume (TPV), translucency parameter (TP) and color of dental all-ceramic systems. METHODS: Specimens of three kinds of all-ceramics systems were made, i.e. heat pressed all-ceramic (IPS Empress II), alumina all-ceramic (In-Cream alumina blanks) and zirconia all-ceramic (Cercon CAD/CAM zirconia). The specimens' TP, lightness (deltaL), chroma (deltaC) and TPV after 1, 3 and 5 firings were measured and calculated by spectrophotometer and surface area/porosity system. The data were analyzed statistically using SAS 8.0 software. RESULTS: There were significant differences in TPV, TP, deltaL and deltaC for all-ceramic specimens at same number of firings (P<0.05), i.e. IPS>alumina and zirconia for TPV (P<0.05); IPS>zirconia>alumina for TP and deltaL (P<0.05); IPS and alumina>zirconia for deltaC (P<0.05). The significant differences also presented in TPV, TP, deltaL and deltaC for a same specimen at different number of firings (P<0.05). With increasing number of firings, TPV decreased, and TP, deltaL and deltaC increased gradually. There were negative linear correlation between number of firings and TPV, TP, deltaL and deltaC (P<0.05). CONCLUSION: Repeated firings will affect TP and deltaL of all-ceramic restorations via the change of TPV.


Assuntos
Cerâmica , Porcelana Dentária , Óxido de Alumínio , Cor , Desenho Assistido por Computador , Humanos , Luz , Teste de Materiais , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...