Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 115959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232527

RESUMO

The arsenic (As) release from litter decomposition of As-hyperaccumulator (Pteris vittata L.) in mine areas poses an ecological risk for metal dispersion into the soil. However, the effect of atmospheric nitrogen (N) deposition on the litter decomposition of As-hyperaccumulator in the tailing mine area remains poorly understood. In this study, we conducted a microcosm experiment to investigate the As release during the decomposition of P. vittata litter under four gradients of N addition (0, 5, 10, and 20 mg N g-1). The N10 treatment (10 mg N g-1) enhanced As release from P. vittata litter by 1.2-2.6 folds compared to control. Furthermore, Streptomyces, Pantoea, and Curtobacterium were found to primarily affect the As release during the litter decomposition process. Additionally, N addition decreased the soil pH, subsequently increased the microbial biomass, as well as hydrolase activities (NAG) which regulated N release. Thereby, N addition increased the As release from P. vittata litter and then transferred to the soil. Moreover, this process caused a transformation of non-labile As fractions into labile forms, resulting in an increase of available As concentration by 13.02-20.16% within the soil after a 90-day incubation period. Our findings provide valuable insights into assessing the ecological risk associated with As release from the decomposition of P. vittata litter towards the soil, particularly under elevated atmospheric N deposition.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Biodegradação Ambiental , Pteris/química , Arsênio/análise , Poluentes do Solo/análise , Solo/química
2.
Ecotoxicol Environ Saf ; 253: 114659, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812869

RESUMO

Glyphosate (GLY) is the most widely used herbicide worldwide, and its effects on animals and plants have attracted increasing attention. In this study, we explored the following: (1) the effects of multigenerational chronic exposure to GLY and H2O2, alone or in combination, on the egg hatching rate and individual morphology of Pomacea canaliculata; and (2) the effects of short-term chronic exposure to GLY and H2O2, alone or in combination, on the reproductive system of P. canaliculata. The results showed that H2O2 and GLY exposure had distinct inhibitory effects on the hatching rate and individual growth indices with a substantial dose effect, and the F1 generation had the lowest resistance. In addition, with the prolongation of exposure time, the ovarian tissue was damaged, and the fecundity decreased; however, the snails could still lay eggs. In conclusion, these results suggest that P. canaliculata can tolerate low concentrations of pollution and in addition to drug dosage, the control should focus on two time points, the juvenile and early stage of spawning.


Assuntos
Peróxido de Hidrogênio , Reprodução , Animais , Peróxido de Hidrogênio/farmacologia , Caramujos , Estresse Oxidativo , Glifosato
3.
ACS Appl Mater Interfaces ; 9(36): 31076-31082, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28819969

RESUMO

Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe2O4@ACNTs, and (b) NiFe2O4@ACNTs. All of these have a similar morphology which is ∼20 µm length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.

4.
ACS Appl Mater Interfaces ; 9(32): 26818-26825, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28745487

RESUMO

A composed material of amorphous carbon nanotubes (ACNTs) and encapsulated transition metal oxide (TMOs) nanoparticles was prepared by a common thermophysics effect, which is named the Marangoni effect, and a simple anneal process. The prepared ropy solution would form a Marangoni convection and climb into the channel of anodic aluminum oxide template (AAO) spontaneously. The ingenious design of the preparation method determined a distinctive structure of TMOs nanoparticles with a size of ∼5 nm and amorphous carbon coated outside full in the ACNTs. Here we prepared the ferric oxide (Fe2O3) nanoparticles and Fe2O3 mixed with manganic oxide (Fe2O3&Mn2O3) nanoparticles encapsulated in ACNTs as two anode materials of lithium ion batteries' the TMOs-filled ACNTs presented an evolutionary electrochemical performance in some respects of highly reversible capacity and excellent cycling stability (880 mA h g-1 after 150 cycles).

5.
ACS Sens ; 2(3): 386-393, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28723200

RESUMO

We demonstrated a flexible transparent and free-standing Si nanowire paper (SiNWP) as a surface enhanced Raman scattering (SERS) platform for in situ chemical sensing on warping surfaces with high sensitivity. The SERS activity has originated from the three-dimension interconnected nanowire network structure and electromagnetic coupling between closely separated nanowires in the SiNWP. In addition, the SERS activity can be highly improved by functionalizing the SiNWP with plasmonic Au nanoparticles. The hybrid substrate not only showed excellent reproducibility and stability of the SERS signal, but also maintained the flexibility and transparency of the pristine SiNWP. To demonstrate its potential application in food inspection, the Au nanoparticles-modified SiNWP was directly wrapped onto the lemon surface for in situ identification and detection of the pesticide residues. The results showed that the excellent SERS activity and transparency of the hybrid substrate enabled the detection of the pesticides down to 72 ng/cm2, which was much lower than the permitted residue dose in food safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...