Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 2): 133655, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969029

RESUMO

Integrated wound care, a sequential process of promoting wound hemostasis, sealing, and healing, is of great clinical significance. However, the wet environment of wounds poses formidable challenges for integrated care. Herein, we developed an epidermal growth factor (EGF)-loaded, dehydrated physical microgel (DPM)-formed adhesive hydrogel for the integrated care of wet wounds. The DPMs were designed using the rational combination of hygroscopicity and reversible crosslinking of physical hydrogels. Unlike regular bioadhesives, which consider interfacial water as a barrier to adhesion, DPMs utilize water to form desirable adhesive structures. The hygroscopicity allowed the DPMs to absorb interfacial water and subsequently, the interfacial adhesion was realized by the interactions between tissue and DPMs. The reversible crosslinks further enabled DPMs to integrate into hydrogels (DPM-Gels), thus achieving wet adhesion. Importantly, the water-absorbing gelation mode of DPMs enabled facile loading of biologically active EGF to promote wound healing. We demonstrated that the DPM-Gels possessed wet tissue adhesive performance, with about 40 times the wet adhesive strength of fibrin glue and about 4 times the burst pressure of human blood pressure. Upon application at the injury site, the EGF-loaded DPM-Gels sequentially promoted efficient wound hemostasis, stable sealing, and quick healing, achieving integrated care of wet wounds.

2.
Acta Biomater ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936752

RESUMO

Integrated wound care through sequentially promoting hemostasis, sealing, and healing holds great promise in clinical practice. However, it remains challenging for regular bioadhesives to achieve integrated care of dynamic wounds due to the difficulties in adapting to dynamic mechanical and wet wound environments. Herein, we reported a type of dehydrated, physical double crosslinked microgels (DPDMs) which were capable of in situ forming highly stretchable, compressible and tissue-adhesive hydrogels for integrated care of dynamic wounds. The DPDMs were designed by the rational integration of the reversible crosslinks and double crosslinks into micronized gels. The reversible physical crosslinks enabled the DPDMs to integrate together, and the double crosslinked characteristics further strengthen the formed macroscopical networks (DPDM-Gels). We demonstrated that the DPDM-Gels simultaneously possess outstanding tensile (∼940 kJ/m3) and compressive (∼270 kJ/m3) toughness, commercial bioadhesives-comparable tissue-adhesive strength, together with stable performance under hundreds of deformations. In vivo results further revealed that the DPDM-Gels could effectively stop bleeding in various bleeding models, even in an actual dynamic environment, and enable the integrated care of dynamic skin wounds. On the basis of the remarkable mechanical and appropriate adhesive properties, together with impressive integrated care capacities, the DPDM-Gels may provide a new approach for the smart care of dynamic wounds. STATEMENT OF SIGNIFICANCE: Integrated care of dynamic wounds holds great significance in clinical practice. However, the dynamic and wet wound environments pose great challenges for existing hydrogels to achieve it. This work developed robust adhesive hydrogels for integrated care of dynamic wounds by designing dehydrated, physical double crosslinked microgels (DPDMs). The reversible and double crosslinks enabled DPDMs to integrate into macroscopic hydrogels with high mechanical properties, appropriate adhesive strength and stable performance under hundreds of external deformations. Upon application at the injury site, DPDM-Gels efficiently stopped bleeding, even in an actual dynamic environment and showed effectiveness in integrated care of dynamic wounds. With the fascinating properties, DPDMs may become an effective tool for smart wound care.

3.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791286

RESUMO

In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.


Assuntos
Materiais Biocompatíveis , Adesivos Teciduais , Adesivos Teciduais/química , Humanos , Animais , Materiais Biocompatíveis/química , Polímeros/química , Plásticos Biodegradáveis/química , Quitosana/química
4.
Aging (Albany NY) ; 16(3): 2194-2231, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38289616

RESUMO

Psoriasis, a complex and recurrent chronic inflammatory skin disease involving various inflammatory cell types, requires effective cell communication to maintain the homeostatic balance of inflammation. However, patterns of communication at the single-cell level have not been systematically investigated. In this study, we employed social network analysis tools, pattern recognition, and manifold learning to compare molecular communication features between psoriasis cells and normal skin cells. Utilizing a process that facilitates the discovery of cell type-specific regulons, we analyzed internal regulatory networks among different cells in psoriasis. Advanced techniques for the quantitative detection of non-targeted proteins in pathological tissue sections were employed to demonstrate protein expression. Our findings revealed a synergistic interplay among the communication signals of immune cells in psoriasis. B-cells were activated, while Langerhans cells shifted into the primary signaling output mode to fulfill antigen presentation, mediating T-cell immunity. In contrast to normal skin cells, psoriasis cells shut down numerous signaling pathways, influencing the balance of skin cell renewal and differentiation. Additionally, we identified a significant number of active cell type-specific regulons of resident immune cells around the hair follicle. This study unveiled the molecular communication features of the hair follicle cell-psoriasis axis, showcasing its potential for therapeutic targeting at the single-cell level. By elucidating the pattern of immune cell communication in psoriasis and identifying new molecular features of the hair follicle cell-psoriasis axis, our findings present innovative strategies for drug targeting to enhance psoriasis treatment.


Assuntos
Psoríase , Humanos , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele/metabolismo , Comunicação Celular , Transdução de Sinais , Rede Social
5.
Adv Healthc Mater ; 13(5): e2302574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063242

RESUMO

Trauma requires immediate hemostasis during primary care, as well as durable hemostasis that can withstand dynamic wound exposure. Although current hemostatic materials can treat bleeding sites in emergency situations, their mechanical strength and storage conditions limit their practical application. The simultaneous combination of good mechanical properties, storage stability, biocompatibility, and rapid hemostasis of hemostatic materials remains a challenge. In this paper, a novel hemostatic material based on multiple non-covalent bond crosslinking, which has excellent mechanical properties, good biocompatibility, storage stability, and rapid hemostasis ability, is reported. Under the drive of multiple non-covalent bonds, the flowability of hydrogel micro-modules (HM) decreases rapidly within 20 s after exposure to physiological saline. The HM form a gel barrier with a tensile strength of 62.10 kPa and an elongation at break of 1976% under multiple non-covalent bonding. Furthermore, the mechanical properties do not change significantly after 30 days of storage. Cell viability is maintained at over 80% after 3 days of incubation with the cells, and the hemolysis test shows a very low hemolysis rate (2.08%). The hemostatic gel formed by HM effectively prevents secondary bleeding in dynamic hemostasis experiments simulating transportation. This work provides a hemostatic material with comprehensive properties for practical applications.


Assuntos
Hemólise , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostasia , Hidrogéis/farmacologia , Hidrogéis/química , Hemorragia/tratamento farmacológico
6.
Sci Rep ; 13(1): 14467, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660146

RESUMO

The patterns of communication among different chondrocyte subtypes in human cartilage degeneration and regeneration help us understand the microenvironment of osteoarthritis and optimize cell-targeted therapies. Here, a single-cell transcriptome dataset of chondrocytes is used to explore the synergistic and communicative patterns of different chondrocyte subtypes. We collected 1600 chondrocytes from 10 patients with osteoarthritis and analyzed the active communication patterns for the first time based on network analysis and pattern recognition at the single-cell level. Manifold learning and quantitative contrasts were performed to analyze conserved and specific communication pathways. We found that ProCs (Proliferative chondrocytes), ECs (Effector chondrocytes), preHTCs (Prehypertrophic chondrocytes), HTCs (Hypertrophic chondrocytes), and FCs (Fibrocartilage chondrocytes) are more active in incoming and outgoing signaling patterns, which is consistent with studies on their close functional cooperation. Among them, preHTCs play multiple roles in chondrocyte communication, and ProCs and preHTCs have many overlapping pathways. These two subtypes are the most active among all chondrocyte subtypes. Interestingly, ECs and FCs are a pair of "mutually exclusive" subtypes, of which ECs are predominant in incoming patterns and FCs in outgoing patterns. The active signaling pathways of ECs and FCs largely do not overlap. COLLAGEN and LAMININ are the main pivotal pathways, which means they are very important in the repair and expansion of joint homeostasis. Notably, only preHTCs assume multiple roles (including sender, receiver, mediator, and influencer) and are involved in multiple communication pathways. We have examined their communication patterns from the perspective of cellular interactions, revealed the relationships among different chondrocyte subtypes, and, in particular, identified a number of active subtypes and pathways that are important for targeted therapy in the osteoarthritic microenvironment. Our findings provide a new research paradigm and new insights into understanding chondrocyte activity patterns in the osteoarthritic microenvironment.


Assuntos
Condrócitos , Osteoartrite , Humanos , Aprendizagem , Hipertrofia
7.
Immunol Lett ; 263: 1-13, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704178

RESUMO

BACKGROUND: Synovial fibroblasts are critical for maintaining homeostasis in major autoimmune diseases involving joint inflammation, including osteoarthritis and rheumatoid arthritis. However, little is known about the interactions among different cell subtypes and the specific sets of signaling pathways and activities that they trigger. METHODS: Using social network analysis, pattern recognition, and manifold learning approaches, we identified patterns of single-cell communication in OA (osteoarthritis) and RA (rheumatoid arthritis). RESULTS: Our results suggest that OA and RA have distinct cellular communication patterns and signaling pathways. The LAMININ (Laminin) and COLLAGEN (Collagen) pathways predominate in osteoarthritis, while the EGF (Epidermal growth factor), NT (Neurotrophin) and CDH5 (Cadherin 5) pathways predominate in rheumatoid arthritis, with a central role for THY1 (Thy-1 cell surface antigen) +CDH11 (Cadherin 11) + cells. The OA opens the PDGF (Platelet-derived growth factors) pathway (driver of bone angiogenesis), the RA opens the EGF pathway (bone formation) and the SEMA3 (Semaphorin 3A) pathway (involved in immune regulation). Interestingly, we found that OA no longer has cell types involved in the MHC complex (Major histocompatibility complex) and their activity, whereas the MHC complex functions primarily in RA in the presentation of inflammatory antigens, and that the complement system in OA has the potential to displace the function of the MHC complex. The specific signaling patterns of THY1+CDH11+ cells and their secreted ligand receptors are more conducive to cell migration and lay the foundation for promoting osteoclastogenesis. This subpopulation may also be involved in the accumulation of lymphocytes, affecting the recruitment of immune cells. Members of the collagen family (COL1A1 (Collagen Type I Alpha 1 Chain), COL6A2 (Collagen Type VI Alpha 2 Chain) and COL6A1 (Collagen Type VI Alpha 1 Chain)) and transforming growth factor (TGFB3) maintain the extracellular matrix in osteoarthritis and mediate cell migration and adhesion in rheumatoid arthritis, including the PTN (Pleiotrophin) / THBS1 (Thrombospondin 1) interaction. CONCLUSION: Increased understanding of the interaction networks between synovial fibroblast subtypes, particularly the shared and unique cellular communication features between osteoarthritis and rheumatoid arthritis and their hub cells, should help inform the design of therapeutic agents for inflammatory joint disease.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Membrana Sinovial , Fator de Crescimento Epidérmico/metabolismo , Laminina/metabolismo , Colágeno Tipo VI/metabolismo , Comunicação Celular , Fibroblastos , Comunicação
8.
Int J Biol Macromol ; 248: 125877, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481189

RESUMO

Injectable hydrogels that can withstand compressive and tensile forces hold great promise for preventing rebleeding in dynamic mechanical environments after emergency hemostasis of wounds. However, current injectable hydrogels often lack sufficient compressive or tensile performance. Here, a microstructure-united heterogeneous injectable hydrogel (MH) was constructed. The heterogeneous structure endowed MH with a unique "microstructures consecutive transmission" feature, which allowed it to exhibit high compressive and tensile performance simultaneously. In this work, two types of sodium alginate doped hydrogels with different microstructures were physically smashed into microgels, respectively. By mixing the microgels, MH with one micro-pores featured microstructure and another nano-pores featured microstructure can be formed. The obtained MH can withstand both compressive and tensile forces and showed high mechanical performance (compressive modulus: 345.67 ± 10.12 kPa and tensile modulus: 245.19 ± 7.82 kPa). Furtherly, MH was proven to provide stable and sustained hemostasis in the dynamic mechanical environment. Overall, this work provided an effective strategy for constructing injectable hydrogel with high compressive and tensile performance for hemostasis in dynamic mechanical environments.


Assuntos
Hidrogéis , Microgéis , Hidrogéis/química , Alginatos/química
9.
Chemistry ; 29(38): e202300621, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085462

RESUMO

Deployment of adhesives in natural seawater to in situ bonds is urgently needed in engineering fields. However, stable adhesion in natural seawater remains a challenge due to the turbulent environment and high ion concentration. Herein, we reported a viscous, macromolecular underwater adhesive enhanced by Hofmeister effect (EHUA) for practical application in dynamic seawater. EHUA was synthesized via a facile one-step copolymerization. After transferred into seawater, the solvent of EHUA was exchanged to seawater, and thereby hydrogen bonds inside the adhesive were activated and enhanced by Hofmeister effect. We demonstrated EHUA can adhere on the surface in turbulent seawater, and the adhesive strength could reach 1.691 MPa. In addition, the adhesives also exhibited long-term storage stability and convenient recyclability. These fascinating properties enable adhesives to seal leaky pipelines, repair damaged ships and construct buildings in turbulent seawater. This work may open an avenue for the design of adhesives for seawater environments.


Assuntos
Adesivos , Água do Mar , Adesivos/química , Substâncias Macromoleculares , Cimentos de Resina/química
10.
J Mater Chem B ; 11(13): 3001-3013, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36919763

RESUMO

Traditional injectable hydrogels have so far found it difficult to accommodate resistance to large deformation and shape-stability under cyclic deformation. Polyampholyte (PA) hydrogels exhibit resistance to large deformation, good fatigue-resistance and rapid self-healing under dynamic forces. The limitations of the preparation process result in non-injectability of polyampholyte (PA) hydrogels. Electrostatic interactions as a medium for resistance to large deformation and shape-stability after cyclic deformation in reformed injectable hydrogels has been explored in this study. The prepared hydrogels (as-prepared PA-N) were dried and smashed into microunits and then mixed with 0.9% NaCl solution to transform them into reformed hydrogels (as-reformed PA-N) via a needle to achieve injectability. The as-reformed PA-N could exhibit 913.6% elongation at break and showed shape-stability under cyclic deformation due to the efficient self-healing abilities of the microunits and the inherited structure of the prepared hydrogels, which are superior to those of current tough injectable hydrogels. Potential applications in elbow cyclic bending and frequent movement of mobile wounds have been proved in this study. Overall, the results showed that the as-reformed PA-N achieved convenient injectability with resistance to large deformation and shape-stability under cyclic deformation at the same time.


Assuntos
Hidrogéis , Hidrogéis/química
11.
Front Chem ; 10: 1007212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385980

RESUMO

Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.

12.
Front Chem ; 10: 1005266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171993

RESUMO

With the rapid development of flexible electronic devices, flexible transparent conductive materials acted as the charge transport layer or electrical interconnect in the devices are of great need. As one of the representative conductive materials, poly(3,4-ethylenedioxythiophene) (PEDOT) has received more and more attention due to its high transparency in the visible region, good flexibility, especially the tunable conductivity. In order to achieve high conductivities, various of effective approaches have been adopted to modify the PEDOT thin films. However, some strategies need to be carried out in hazardous solvents, which may pollute the environment and even hinder the application of PEDOT thin films in emerging bioelectronics. Therefore, in this mini review, we focus on the discussion about the modification methods for PEDOT thin films in green solvents. According to the source of PEDOT, the modification methods of PEDOT thin films are mainly described from two aspects: 1) modification of in-situ PEDOT, 2) modification of PEDOT complex with poly(styrenesulfonic acid) (PEDOT:PSS). Finally, we conclude with the remaining challenges for future development on the PEDOT thin films prepared by green methods.

13.
Colloids Surf B Biointerfaces ; 215: 112508, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35468430

RESUMO

High-strength hydrogels formed in situ through a convenient gel transition process are highly desirable for emergency treatment due to their ability to quickly respond to accidents. However, current in-situ formed hydrogels require a laborious precursor preparation process or lack sufficient mechanical strength. Herein, we reported a series of microgels that were capable of convenient in-situ transition to high-strength hydrogels from their easily portable form, thereby facilitating emergency treatment. Three kinds of microgels were derived from two types of hydrogen bonds (H-bonds; OH⋯OC, NH⋯OC) crosslinked preformed hydrogels, and all exhibited excellent stability when stored at room temperature. After mixing with water, all these microgels could undergo a quick hydration process and then transform into high-strength hydrogels in situ through H-bonds. Specifically, stronger H-bond crosslinked microgels could build hydrogels with higher mechanical strength, albeit at the cost of longer hydration and operation time. Nevertheless, the whole operation process could be finished within several minutes, and the resultant hydrogels could exhibit maximally megapascal-level compressive strength and tens of kilopascal storage modulus. In the comparison of emergency application performance with commercial chitosan hemostatic powder (CHP), we found that the microgels could stop accidental bleeding almost immediately, and the whole process from taking out the stored microgels to hemostasis could be completed within 15 s, which was superior to CHP. Overall, the results indicated that the in-situ formed microgel-based hydrogels with convenient gel-transition ability and high strength showed great potential in emergency treatments.


Assuntos
Quitosana , Microgéis , Tratamento de Emergência , Hemostasia , Hidrogéis/química
14.
J Control Release ; 345: 537-548, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341902

RESUMO

Exosomes are small extracellular vehicles which could transport genetic materials and proteins between cells. Although there are reports about exosomes crossing the blood-brain barrier (BBB), the underlying mechanisms still need further study. We found that exosomes from primary brain tumors could upregulate the expression of Lipocalin-2 (LCN2) in bEnd.3 brain microvascular endothelial cells (BMVECs). Furthermore, exosomes increased the membrane fluidity of bEnd.3 cells in an LCN2 dependent manner. Both intraperitoneal injection and caudal vein injection of LCN2 increased the number of nanocapsules crossing the BBB. Evans Blue staining revealed that LCN2 does not interrupt the integrity of the BBB, as observed in the traumatic brain injury model. Tandem mass tags quantitative proteomics and bioinformatics analysis revealed that LCN2 is upregulated by exosomes via the JAK-STAT3 pathway, but not delivered from exosomes. Knocking down LCN2 in bEnd.3 cells significantly abrogated the effect of exosomes on BMVEC membrane fluidity. Previously, we have reported that 2-methacryloyloxyethyl phosphorylcholine (MPC) and a peptide crosslinker could encapsulate mAbs to achieve nanocapsules. The nanocapsules containing choline analogs could effectively penetrate the BBB to deliver therapeutic monoclonal antibodies (tAbs) to the glioma. However, the delivered tAbs could be significantly reduced by blocking the release of exosomes from the gliomas. Application of tAb nanocapsules prior to treatment with MK2206, an AKT pathway inhibitor that has been shown to inhibit the production of exosomes, resulted in a better combination. Insights from this study provide a mechanistic framework with regard to how glioblastomas hijack BMVECs using exosomes. In addition, we provide a strategy for maximizing the effect of the choline-containing nanocapsules and MK2206 combination. These results also demonstrate the therapeutic role of tAbs in glioblastoma and brain tumor metastasis, by shedding new light on strategies that can be used for BBB-penetrating therapies.


Assuntos
Exossomos , Glioblastoma , Glioma , Nanocápsulas , Barreira Hematoencefálica/metabolismo , Colina , Células Endoteliais/metabolismo , Exossomos/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Lipocalina-2/metabolismo
15.
ACS Omega ; 7(9): 8174-8183, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284756

RESUMO

The early-stage repair of bone injuries dominated by the inflammatory phase is significant for successful bone healing, and the phenotypic transition of macrophages in the inflammatory phase plays indispensable roles during the bone healing process. The goal of this paper is to design a microRNA delivery nanocarrier for strictly temporal guidance of the polarization of macrophages by the sequential delivery of different microRNAs. The results showed that microRNA nanocarriers, synthesized through free radical polymerization, could be internalized by macrophages with about a cellular uptake efficiency of 80%, and the sequential delivery of microRNA-155 nanocarriers and microRNA-21 nanocarriers proved, for the first time, that it could promote an efficient and timely switch from the M1 to the M2 phenotype along the time point of bone tissue repair. The strategy proposed in this paper holds potential for controlling sequential M1-to-M2 polarization of macrophages, which provides another perspective for the treatment of bone tissue regeneration.

16.
Biochem Biophys Res Commun ; 595: 82-88, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104704

RESUMO

The development of ultra-long circulating nanodrug delivery systems have showed distinct advantage in maintaining the long-lasting tumor retention. Although the relationship between extended tumor retention and ultra-long plasma half-life was apparent, there was still a lack of experimental evidence to reveal the enhancement mechanism. Herein, we proposed a concept of "Sustained Irrigation" effect ("SI" effect) to elucidate that it was through sustained blood irrigation that the ultra-long circulating nanoparticles achieved long-lasting tumor retention. Besides, in order to intuitively verify the "SI" effect, we developed an "ON-OFF-ON" fluorescence switch technology. The ultra-long circulating delivery nanoparticle was constructed by encapsulating the protein with hydrophilic polymer shell. Nanoparticles with ultra-long plasma half-life (t1/2>40 h) fabricated by this method were employed as models for demonstrating the "SI" effect. The recovery of Cy5.5 fluorescence after the laser quenching meant the "fresh" Cy5.5-labeled nanoparticles were entering tumor, which confirmed the ultra-long circulating nanoparticles in blood could sustainedly irrigate to tumor. Our finding revealed the key mechanism by which ultra-long circulating NDDSs enhanced the tumor accumulation and retention, and provided experimental support for the development of ultra-long circulating delivery system in clinic.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/metabolismo , Soroalbumina Bovina/administração & dosagem , Animais , Carbocianinas/química , Carbocianinas/farmacocinética , Linhagem Celular Tumoral , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Masculino , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ratos Sprague-Dawley , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Distribuição Tecidual
17.
Int J Biol Sci ; 17(15): 4365-4376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803504

RESUMO

Given the heterogeneity of solid tumors, single-target CAR-T cell therapy often leads to recurrence, especially in ovarian cancer (OV). Here, we constructed a Tandem-CAR targeting two antigens with secretory activity (IL-12) to improve the effects of CAR-T cell therapy. Twenty coexpressed upregulated genes were identified from the GEO database, and we found FOLR1 (folate receptor 1) and MSLN (mesothelin) were specifically and highly expressed in cancer tissues and only 11.25% of samples were negative for both antigens. We observed an increased proliferation rate for these three CAR-T cells, and Tandem CAR-T cells could efficiently lyse antigen-positive OV cells in vitro and secrete higher levels of cytokines than single-target CAR-T cells. More importantly, in vivo experiments indicated that Tandem CAR-T cells markedly decreased tumor volume, exhibited enhanced antitumor activity, and prolonged mouse survival. Furthermore, the infiltration and persistence of T cells in the Tandem-CAR group were higher than those in the MSLN-CAR and Control-T groups but comparable to those in the FOLR1-CAR group. Collectively, this study demonstrated that Tandem CAR-T cells secreting IL-12 could enhance immunotherapeutic effects by reducing tumor antigen escape and increasing T cell functionality, which could be a promising therapeutic strategy for OV and other solid tumors.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Receptor 1 de Folato/metabolismo , Mesotelina/metabolismo , Neoplasias Ovarianas/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Citocinas/genética , Citocinas/metabolismo , Bases de Dados Genéticas , Feminino , Receptor 1 de Folato/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-12/metabolismo , Mesotelina/genética , Camundongos , Camundongos Nus , Transcriptoma , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Ecotoxicol Environ Saf ; 224: 112633, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411816

RESUMO

There are increasing concerns with regard to spontaneous abortion (SAB), the loss of pregnancy without external intervention before 20 weeks of gestation, among reproductive-aged women. To date, limited evidence is available concerning the association between SAB and air pollutants, especially in developing countries. Daily baseline outpatient data for SAB from January 1, 2014, to December 31, 2018 (1826 days) were obtained in Chongqing, a metropolis of southwest China. The over-dispersed Poisson generalized additive model with control of meteorological conditions and day of week was used to estimate the short-term effects of ambient air pollution on the daily number of SAB outpatients. A total of 42,334 SAB outpatient visits for SAB were recorded. No statistically significant association was observed between SAB and CO, PM2.5, PM10, O3, and SO2. The positive association only appeared for NO2: positive associations between SAB and NO2 were observed in both single-day models (lag 0, lag 1, lag 3, and lag 4) and cumulative exposure models (lag 01, lag 03, and lag 05) and the most significant effects were observed at lag 05 (3.289%; 95% CI: 1.568%, 5.011%). Moreover, the women with higher ages (30-39 and > 39) were more sensitive than those with lower ages (18-29), and the effect estimates were more evident in cool seasons. Collectively, our results suggested that short-term NO2 exposure was associated with higher risk of SAB, especially in elder women and cool seasons, which may contribute to further understand the role of air pollution on SAB and other adverse obstetric outcomes.

19.
Theranostics ; 11(17): 8197-8217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373737

RESUMO

Ischemic stroke is an acute and severe neurological disease, which leads to disability and death. Immunomodulatory therapies exert multiple remarkable protective effects during ischemic stroke. However, patients suffering from ischemic stroke do not benefit from immunomodulatory therapies due to the presence of the blood-brain barrier (BBB) and their off-target effects. Methods: We presented a delivery strategy to optimize immunomodulatory therapies by facilitating BBB penetration and selectively delivering intravenous immunoglobulin (IVIg) to ischemic regions using 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules, MPC-n(IVIg), synthesized using MPC monomers and ethylene glycol dimethyl acrylate (EGDMA) crosslinker via in situ polymerization. In vitro and in vivo experiments verify the effect and safety of MPC-n(IVIg). Results: MPC-n(IVIg) efficiently crosses the BBB and IVIg selectively accumulates in ischemic areas in a high-affinity choline transporter 1 (ChT1)-overexpression dependent manner via endothelial cells in ischemic areas. Moreover, earlier administration of MPC-n(IVIg) more efficiently deliver IVIg to ischemic areas. Furthermore, the early administration of low-dosage MPC-n(IVIg) decreases neurological deficits and mortality by suppressing stroke-induced inflammation in the middle cerebral artery occlusion model. Conclusion: Our findings indicate a promising strategy to efficiently deliver the therapeutics to the ischemic target brain tissue and lower the effective dose of therapeutic drugs for treating ischemic strokes.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica/tratamento farmacológico , Imunoglobulinas Intravenosas , Fármacos Neuroprotetores/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Imunoglobulinas Intravenosas/farmacologia , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/farmacologia , AVC Isquêmico/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia
20.
Front Pharmacol ; 12: 588837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967747

RESUMO

Dichroa alkali salt (DAS) is the active ingredient of Changshan, a traditional Chinese antimalarial medicine. However, owing to its vomiting side effects, its clinical use is limited. Recently, DAS-induced vomiting has attracted broad attention; however, the mechanisms involved have not yet been elucidated. The present study aimed to explore DAS induced vomiting and decipher the potential role of the 5-serotonin (5-HT) and substance p (SP) signaling pathways. We used a combination of approaches in the context of a rat pica model, such as immunoblot analysis, HPLC-ECD, ELISA, quantitative real-time PCR, pharmacological inhibition, and immunohistochemistry assays. We demonstrated that DAS contributed to Changshan-induced vomiting via the activation of the 5-HT and SP signaling pathways. DAS could induce a dose-dependent kaolin intake in the rat pica model. Moreover, DAS caused a similar profile as Cisplatin (DDP): "low-dose double-peak, high-dose single-peak pica phenomenon". Interestingly, treatment with DAS stimulated the peripheral ileum and central medulla oblongata and augmented the release of 5-HT, SP, and preprotachykinin-A and the expression of 5-HT3 and NK1 receptors in the two issues in acute phase. Additionally, the 5-HT3 and NK1 receptor antagonists effectively alleviated DAS-induced kaolin intake and significantly reduced DAS-induced 5-HT and SP levels in the two issues in acute phase. Similar responses were not observed in the context of dopamine receptor inhibition. This study innovatively revealed that the 5-HT and SP-mediated vomiting network plays an important role in DAS-induced acute vomiting; of note, ondansetron, and aprepitant can effectively antagonize DAS-induced vomiting. Our results suggest a potential therapeutic strategy (based on drugs approved for human use) to prevent the DAS-associated adverse reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...