Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110007

RESUMO

Water electrolysis as an important and facile strategy to generate hydrogen has attracted great attention, and efficient electrocatalysts play a key role in hydrogen evolution reaction (HER). Herein, vertical graphene (VG)-supported ultrafine NiMo alloy nanoparticles (NiMo@VG@CC) were fabricated successfully via electro-depositing as efficient self-supported electrocatalysts for HER. The introduction of metal Mo optimized the catalytic activity of transition metal Ni. In addition, VG arrays as the three-dimensional (3D) conductive scaffold not only ensured high electron conductivity and robust structural stability, but also endowed the self-supported electrode large specific surface area and exposed more active sites. With the synergistic effect between NiMo alloys and VG, the optimized NiMo@VG@CC electrode exhibited a low overpotential of 70.95 mV at 10 mA cm-2 and a remarkable stable performance over 24 h. This research is anticipated to offer a powerful strategy for the fabrication of high-performance hydrogen evolution catalysts.

2.
Opt Express ; 29(21): 32818-32825, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809104

RESUMO

Angle-resolved polarized (ARP) Raman spectroscopy can be utilized to characterize the Raman modes of two-dimensional layered materials based on crystal symmetry or crystal orientation. In this paper, the polarization properties of E 1 2g and A1g modes on the basal plane and edge plane of high purity 2H-MoS2 bulk crystal grown by chemical vapor transport (CVT) method were investigated by ARP Raman spectroscopy. The I and II type ARP Raman spectroscopy with four kinds of polarization configurations: αY, αX, ßY, and ßX were used to explore the intensity dependence of E 1 2g and A1g modes at different planes on the polarization direction of incident/scattered light. The results show that the E 1 2g and A1g modes exhibit different polarization properties dependent on the polarization of the incident laser and the in-plane rotation of the sample at different planes. The experimental results were confirmed and analyzed through theoretical calculation. Our work sheds light on the intriguing effect of the subtle atomic structure in stacked MoS2 layers on the resulting ARP Raman properties. This provides a reference for the study of other two-dimensional layered crystalline materials by ARP Raman spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...