Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 147: 213323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764198

RESUMO

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Assuntos
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacologia , Peróxidos Lipídicos/uso terapêutico , Lipossomos/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
2.
Acta Pharmacol Sin ; 43(11): 2946-2955, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35388129

RESUMO

Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MAP Quinase Quinase Quinases , MicroRNAs , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Front Chem ; 9: 666408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937203

RESUMO

The over-use of antibiotics has promoted multidrug resistance and decreased the efficacy of antibiotic therapy. Thus, it is still in great need to develop efficient treatment strategies to combat the bacteria infection. The antimicrobial photodynamic therapy (aPDT) and silver nanoparticles have been emerged as effective antibacterial methods. However, the silver therapy may induce serious damages to human cells at high concentrations and, the bare silver nanoparticles may rapidly aggregate, which would reduce the antibacterial efficacy. The encapsulation of sliver by nano-carrier is a promising way to avoid its aggregation and facilitates the co-delivery of drugs for combination therapy, which does not require high concentration of sliver to exert antibacterial efficacy. This work constructed a self-assembled supermolecular nano-carrier consisting of the photosensitizers (PSs), the anti-inflammatory agent and silver. The synthesized supermolecular nano-carrier produced reactive oxygen species (ROS) under the exposure of 620-nm laser. It exhibited satisfying biocompatibility in L02 cells. And, this nano-carrier showed excellent antibacterial efficacy in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as indicated by bacterial growth and colony formation. Its antibacterial performance is further validated by the bacteria morphology through the scanning electron microscope (SEM), showing severely damaged structures of bacteria. To summary, the supermolecular nano-carrier TCPP-MTX-Ag-NP combining the therapeutic effects of ROS and silver may serve as a novel strategy of treatment for bacterial infection.

4.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33893396

RESUMO

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diterpenos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fenantrenos/farmacologia , beta Catenina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Compostos de Epóxi/farmacologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , beta Catenina/genética
5.
J Colloid Interface Sci ; 593: 323-334, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33744541

RESUMO

In recent years, chemodynamic therapy (CDT) has gained increasing interest in cancer treatment. In contrast to photodynamic therapy and sonodynamic therapy, extrinsic excitations such as laser or ultrasound are not required in CDT. As a result, the CDT performance is not limited by the penetration depth of the external irritation. However, CDT relies heavily on hydrogen peroxide (H2O2) in the tumour microenvironment (TME). Insufficient H2O2 in the TME limits the CDT performance, and the most reported methods to produce H2O2 in the TME are dependent on oxygen supply, which is restricted by the hypoxic TME. In this study, H2O2 self-providing copper nanodots were proposed, and the drug doxorubicin (DOX) was successfully loaded to construct DOX-nanodots. Our results showed that the nanodots produced H2O2 in the weakly acidic TME due to the peroxo group and further generated the most active hydroxyl radical (OH) through the Fenton-like reaction. This process was pH-dependent and did not occur in a neutral environment. In addition to OH, the nanodots also produced singlet oxygen (1O2) and superoxide anions (O2-) in the cancer cells. The copper nanodots performed promising CDT against breast cancer in vitro and in vivo, with enhanced cell apoptosis and decreased cell proliferation. The combination of chemotherapy and CDT using DOX-nanodots further improved the therapeutic effects. The treatments showed good biocompatibility with no obvious toxicity in major tissues, possibly due to the specific OH generation in the weakly acidic TME. In summary, the H2O2 self-providing copper nanodots in combination with DOX showed promising cancer-curing effects due to the oxygen-independent and tumour-specific production of reactive oxygen species and the cooperation of chemotherapy.


Assuntos
Neoplasias da Mama , Peróxido de Hidrogênio , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cobre , Doxorrubicina/farmacologia , Feminino , Humanos , Microambiente Tumoral
6.
J Nanobiotechnology ; 18(1): 110, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762751

RESUMO

BACKGROUNDS: Due to the unexpected side effects of the iodinated contrast agents, novel contrast agents for X-ray computed tomography (CT) imaging are urgently needed. Nanoparticles made by heavy metal elements are often employed, such as gold and bismuth. These nanoparticles have the advantages of long in vivo circulation time and tumor targeted ability. However, due to the long residence time in vivo, these nanoparticles may bring unexpected toxicity and, the preparation methods of these nanoparticles are complicated and time-consuming. METHODS: In this investigation, a small molecular bismuth chelate using diethylenetriaminepentaacetic acid (DPTA) as the chelating agent was proposed to be an ideal CT contrast agent. RESULTS: The preparation method is easy and cost-effective. Moreover, the bismuth agent show better CT imaging for kidney than iohexol in the aspect of improved CT values. Up to 500 µM, the bismuth agent show negligible toxicity to L02 cells and negligible hemolysis. And, the bismuth agent did not induce detectable morphology changes to the main organs of the mice after intravenously repeated administration at a high dose of 250 mg/kg. The pharmacokinetics of the bismuth agent follows the first-order elimination kinetics and, it has a short half-life time of 0.602 h. The rapid clearance from the body promised its excellent biocompatibility. CONCLUSIONS: This bismuth agent may serve as a potential candidate for developing novel contrast agent for CT imaging in clinical applications.


Assuntos
Bismuto , Meios de Contraste , Tomografia Computadorizada por Raios X/métodos , Animais , Bismuto/química , Bismuto/farmacocinética , Bismuto/toxicidade , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Iohexol/química , Iohexol/farmacocinética , Rim/diagnóstico por imagem , Rim/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Ácido Pentético/química , Ácido Pentético/farmacocinética , Distribuição Tecidual , Imagem Corporal Total
7.
Sheng Li Xue Bao ; 71(2): 205-215, 2019 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-31008480

RESUMO

At present, it is generally believed that the paracrine effect of stem cells in the repair of myocardial injury is one of the important ways for stem cell therapy. Exosomes are phospholipid bilayer-enclosed nanovesicles that secreted by cells under physiological and pathological conditions. Cargo loaded into exosomes including protein, lipids and nucleic acids can be delivered to recipient cells. Therefore, exosomes are recognized as important mediators for intercellular communication. It has been suggested that exosomes from stem cells (eg. embryonic stem cells, induced pluripotent stem cells, cardiac progenitor cells, mesenchymal stem cells and cardiosphere-derived cells) have protective effects against heart injury. In this review, we summarized recent research progresses on stem cell-derived exosomes in myocardial injury, including the therapeutic effects and mechanism.


Assuntos
Comunicação Celular , Exossomos/fisiologia , Traumatismos Cardíacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Humanos
8.
Mol Pharm ; 15(10): 4621-4631, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179511

RESUMO

The purpose of this research is to establish an injectable hydrogel encapsulating copper sulfide (CuS) nanodots for photothermal therapy against cancer. The CuS nanodots were prepared by one-pot synthesis, and the thermosensitive Pluronic F127 was used as the hydrogel matrix. The CuS nanodots and the hydrogel were characterized by morphous, particle size, serum stability, photothermal performance upon repeated 808 nm laser irradiation, and rheology features. The effects of the CuS nanodots and the hydrogel were evaluated qualitatively and quantitatively in 4T1 mouse breast cancer cells. The retention, photothermal efficacy, therapeutic effects, and systemic toxicity of the hydrogel were assessed in tumor bearing mouse model. The CuS nanodots with a diameter of about 8 nm exhibited satisfying serum stability, photoheat conversion ability, and repeated laser exposure stability. The hydrogel encapsulation did not negatively influence the above features of the photothermal agent. The nanodot-loaded hydrogel shows a phase transition at body temperature and, as a result, a long retention in vivo. The photothermal-agent-embedded hydrogel played a promising photothermal therapeutic effect in the tumor bearing mouse model with low systemic toxicity after peritumoral administration.


Assuntos
Cobre/química , Hidrogéis/química , Nanopartículas/química , Fototerapia/métodos , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Camundongos , Poloxâmero/química , Temperatura
9.
Acta Pharmacol Sin ; 39(4): 542-551, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29417947

RESUMO

Exosomes are nano-sized vesicles that serve as mediators for intercellular communication through the delivery of cargo, including protein, lipids, nucleic acids or other cellular components, to neighboring or distant cells. Exosomal cargo may vary in response to different physiological or pathological conditions. The endosomal sorting complex required for transport (ESCRT) family has been widely accepted as a key mechanism in biogenesis and cargo sorting. On the other hand, accumulating evidence show that ESCRT-independent pathways exist. Due to the critical role of exosomes in intercellular communications in delivering cargo to recipient cells, exosomes have been investigated as a vector for the delivery of endogenous or exogenous cargo for therapeutic purposes. But the number of exosomes produced by cells is limited, which hampers their application. Synthetic exosome-mimics have been fabricated and investigated as a therapeutic tool for drug delivery. This review focuses on ESCRT-independent regulation of cargo loading into exosomes, including lipid raft and ceramide-mediated mechanisms, and reported exosomes or exosome-mimics with therapeutic effects.


Assuntos
Materiais Biomiméticos/farmacologia , Portadores de Fármacos/farmacologia , Exossomos/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Exossomos/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Nanopartículas/uso terapêutico
10.
Br J Pharmacol ; 172(17): 4303-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26040411

RESUMO

BACKGROUND AND PURPOSE: Matrine is a small molecule drug used in humans for the treatment of chronic viral infections and tumours in the liver with little adverse effects. The present study investigated its therapeutic efficacy for insulin resistance and hepatic steatosis in high-fat-fed mice. EXPERIMENTAL APPROACH: C57BL/J6 mice were fed a chow or high-fat diet for 10 weeks and then treated with matrine or metformin for 4 weeks. The effects on lipid metabolism and glucose tolerance were evaluated. KEY RESULTS: Our results first showed that matrine reduced glucose intolerance and plasma insulin level, hepatic triglyceride content and adiposity in high-fat-fed mice without affecting caloric intake. This reduction in hepatosteatosis was attributed to suppressed lipid synthesis and increased fatty acid oxidation. In contrast to metformin, matrine neither suppressed mitochondrial respiration nor activated AMPK in the liver. A computational docking simulation revealed HSP90, a negative regulator of HSP72, as a potential binding target of matrine. Consistent with the simulation results, matrine, but not metformin, increased the hepatic protein level of HSP72 and this effect was inversely correlated with both liver triglyceride level and glucose intolerance. CONCLUSIONS AND IMPLICATIONS: Taken together, these results indicate that matrine may be used for the treatment of type 2 diabetes and hepatic steatosis, and the molecular action of this hepatoprotective drug involves the activation of HSP72 in the liver.


Assuntos
Alcaloides/administração & dosagem , Sistemas de Liberação de Medicamentos/tendências , Fígado Gorduroso/tratamento farmacológico , Intolerância à Glucose/tratamento farmacológico , Proteínas de Choque Térmico HSP72/agonistas , Quinolizinas/administração & dosagem , Alcaloides/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Intolerância à Glucose/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinolizinas/metabolismo , Matrinas
11.
Biochim Biophys Acta ; 1852(1): 156-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25458704

RESUMO

The unfolded protein response (UPR) pathways have been implicated in the development of hepatic insulin resistance during high fructose (HFru) feeding. The present study investigated their roles in initiating impaired insulin signaling transduction in the liver induced by HFru feeding in mice. HFru feeding resulted in hepatic steatosis, increased de novo lipogenesis and activation of two arms of the UPR pathways (IRE1/XBP1 and PERK/eIF2α) in similar patterns from 3days to 8weeks. In order to identify the earliest trigger of impaired insulin signaling in the liver, we fed mice a HFru diet for one day and revealed that only the IRE1 branch was activated (by 2-fold) and insulin-mediated Akt phosphorylation was blunted (~25%) in the liver. There were significant increases in phosphorylation of JNK (~50%) and IRS at serine site (~50%), protein content of ACC and FAS (up to 2.5-fold) and triglyceride level (2-fold) in liver (but not in muscle or fat). Blocking IRE1 activity abolished increases in JNK activity, IRS serine phosphorylation and protected insulin-stimulated Akt phosphorylation without altering hepatic steatosis or PKCε activity, a key link between lipids and insulin resistance. Our findings together suggest that activation of IRE1-JNK pathway is a key linker of impaired hepatic insulin signaling transduction induced by HFru feeding.


Assuntos
Frutose/administração & dosagem , Frutose/metabolismo , Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo , Animais , Resistência à Insulina , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...