Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(4): 811-821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36151392

RESUMO

Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 µM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 2 , Canais de Cátion TRPV , Animais , Feminino , Humanos , Camundongos , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Células Epiteliais/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia
2.
Indian J Dermatol ; 68(6): 724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371571

RESUMO

Background: T helper (Th) cells are involved in the pathogenesis of pemphigus vulgaris (PV). However, the mechanism still needs more exploration. Aims: This study aimed to evaluate the molecular mechanism of the dysregulation of Th17 cells in the peripheral blood of patients with PV. Materials and Methods: Serum levels of IL-17 and anti-Dsg3 titres in patients with PV were analysed using ELISA. The mRNA expression of retinoic acid orphan receptor γt (RORγt) in CD4+ T cells was detected using reverse transcription-quantitative PCR (qPCR). The number of Th17 cells was examined using flow cytometry. Western blot analysis and immunofluorescent staining were also performed to investigate the expression levels of ERK/MAPK signalling proteins and Th17 lineage-associated proteins. Results: The proportion of Th17 cells and Th17 spectrum-associated proteins (p-STAT3, RORγt and IL-17) were upregulated in CD4+ cells in PV patients. The increased transcriptional levels of RORγt and IL-17 correlated positively with the severity of PV. Elevated phosphorylation of the ERK signalling factors was found in the collected CD4+ T cells in PV patients. The inhibition of the ERK signalling pathway significantly reduced the differentiation of Th17 cells in PV patients in vitro. Conclusion: Th17 cells are essential in the dysregulation of PV, and ERK signalling is involved in Th17-type immunity and promotes the development of PV. The study here provides us with a potential therapeutic target for PV.

3.
Transl Vis Sci Technol ; 10(6): 3, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34111250

RESUMO

Purpose: Proliferative diabetic retinopathy (PDR) is a serious ocular disease that can lead to retinal microvascular complications in patients with diabetes mellitus. To date, no studies have explored PDR development by analyzing the aqueous humor (AH). Therefore we carried out tandem mass tag (TMT) proteomic quantification to compare AH protein profiles between PDR and non-PDR subjects. Methods: We enrolled six PDR and six control (senile cataract) subjects. AH samples were collected during surgery and stored at -80°C. Proteins were extracted, trypsin-digested, and labeled with TMTs for mass spectrometric analysis. Results: We found 191 proteins to be changed with |log2 (fold change)| ≥1 (P < 0.05 and identification with at least two peptides per protein). Of them, 111 were downregulated, whereas 80 were upregulated in the PDR group. Proteomic bioinformatic analysis indicated that PDR development was related to complement and coagulation cascades, platelet activation, extracellular matrix-receptor interaction, focal adhesion, protein digestion and absorption, human papillomavirus infection, PI3K-Akt signaling pathway, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathways, fat digestion and absorption, and vitamin digestion and absorption pathways. Conclusions: Comprehensive proteomic profiling of the AH revealed 191 differentially expressed proteins between the two groups. Most of these proteins belong to secretory pathways, and therefore can be used as biomarkers in clinical testing and basic research. Translational Relevance: Pathway analysis and a review of the literature enabled us to draw a novel biological map that will support further studies on the underlying mechanisms and therapeutic control of PDR development.


Assuntos
Humor Aquoso , Diabetes Mellitus , Retinopatia Diabética , Humanos , Proteômica , Corpo Vítreo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...