Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2312176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429904

RESUMO

Twisted van der Waals materials featuring Moiré patterns present new design possibilities and demonstrate unconventional behaviors in electrical, optical, spintronic, and superconducting properties. However, experimental exploration of thermal transport across Moiré patterns has not been as extensive, despite its critical role in nanoelectronics, thermal management, and energy technologies. Here, the first experimental study is conducted on thermal transport across twisted graphene, demonstrating a phonon polarizer concept from the rotational misalignment between stacked layers. The direct thermal and acoustic measurements, structural characterizations, and atomistic modeling, reveal a modulation up to 631% in thermal conductance with various Moiré angles, while maintaining a high acoustic transmission. By comparing experiments with density functional theory and molecular dynamics simulations, mode-dependent phonon transmissions are quantified based on the angle alignment of graphene band structures and attributed to the coupling among flexural phonon modes. The agreement confirms the dominant tuning mechanisms in adjusting phonon transmission from high-frequency thermal modes while having negligible effects on low-frequency acoustic modes near Brillouin zone center. This study offers crucial insights into the fundamental thermal transport in Moiré structures, opening avenues for the invention of quantum thermal devices and new design methodologies based on manipulations of vibrational band structures and phonon spectra.

2.
Phys Rev B ; 108(14)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38881566

RESUMO

In general, vibrational physics has been well described by quantum perturbation theory to provide footprint characteristics for common crystals. However, despite weak phonon anharmonicity, the recently discovered cubic crystals have shown anomalous vibrational dynamics with elusive fundamental origin. Here, we developed a non-perturbative ab initio approach, in together with spectroscopy and high-pressure experiments, to successfully determine the exact dynamic evolutions of the vibrational physics for the first time. We found that the local fluctuation and coupling isotopes significantly dictate the vibrational spectra, through the Brillouin zone folding that has been previously ignored in literature. By decomposing vibrational spectra into individual isotope eigenvectors, we observed both positive and negative contributions to Raman intensity from constitutional atoms (10B, 11B, 75As or 31P). Importantly, our non-perturbative theory predicts that a novel vibrational resonance appears at high hydrostatic pressure due to broken translational symmetry, which was indeed verified by experimental measurement under a pressure up to 31.5 GPa. Our study develops fundamental understandings for the anomalous lattice physics under the failure of quantum perturbation theory and provides a new approach in exploring novel transport phenomena for materials of extreme properties.

3.
Nature ; 612(7940): 459-464, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418403

RESUMO

High pressure represents extreme environments and provides opportunities for materials discovery1-8. Thermal transport under high hydrostatic pressure has been investigated for more than 100 years and all measurements of crystals so far have indicated a monotonically increasing lattice thermal conductivity. Here we report in situ thermal transport measurements in the newly discovered semiconductor crystal boron arsenide, and observe an anomalous pressure dependence of the thermal conductivity. We use ultrafast optics, Raman spectroscopy and inelastic X-ray scattering measurements to examine the phonon bandstructure evolution of the optical and acoustic branches, as well as thermal conductivity under varied temperatures and pressures up to 32 gigapascals. Using atomistic theory, we attribute the anomalous high-pressure behaviour to competitive heat conduction channels from interactive high-order anharmonicity physics inherent to the unique phonon bandstructure. Our study verifies ab initio theory calculations and we show that the phonon dynamics-resulting from competing three-phonon and four-phonon scattering processes-are beyond those expected from classical models and seen in common materials. This work uses high-pressure spectroscopy combined with atomistic theory as a powerful approach to probe complex phonon physics and provide fundamental insights for understanding microscopic energy transport in materials of extreme properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...