Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470090

RESUMO

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Assuntos
Plantas Geneticamente Modificadas , Biologia Sintética , Zea mays , Biologia Sintética/métodos , Zea mays/genética , Zea mays/metabolismo , Humanos , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Células HEK293 , Xantofilas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Animais , Ácidos Nucleicos/genética , Expressão Gênica , Vetores Genéticos/genética , Protoplastos/metabolismo
3.
Opt Express ; 32(2): 2590-2606, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297784

RESUMO

Urban construction activities seriously jeopardize the security of buried pipeline. Distributed optical fiber vibration monitoring is one of the most promising ways to prevent third-party threats, of which the biggest challenge is to quickly and accurately detect rare abnormal events from extremely large amounts of time-space raw data. By analogy with image recognition, the task here is similar to object detection if considering the time-space optical signals as the grayscale images and the abnormal events as the objects. Given this, what we believe to be a novel monitoring method is proposed, which consists of two Faster R-CNN models, a max pooling layer and a monitoring strategy. In the field tests, the 86-hour optical vibration signals for 5.25 km distance are recognized within 6.6 minutes with the recognition rate of 98.85% for construction activities, and only two false alarms are issued. The proposed method can reduce the recognition time by 99.59% compared to the CNN-based method.

4.
BMC Plant Biol ; 24(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163880

RESUMO

BACKGROUND: Yellow Stripe-Like (YSL) proteins are involved in the uptake and transport of metal ions. They play important roles in maintaining the zinc and iron homeostasis in Arabidopsis, rice (Oryza sativa), and barley (Hordeum vulgare). However, proteins in this family have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: In this study, we identified 19 ZmYSLs in the maize genome and analyzed their structural features. The results of a phylogenetic analysis showed that ZmYSLs are homologous to YSLs of Arabidopsis and rice, and these proteins are divided into four independent branches. Although their exons and introns have structural differences, the motif structure is relatively conserved. Analysis of the cis-regulatory elements in the promoters indicated that ZmYSLs might play a role in response to hypoxia and light. The results of RNA sequencing and quantitative real-time PCR analysis revealed that ZmYSLs are expressed in various tissues and respond differently to zinc and iron deficiency. The subcellular localization of ZmYSLs in the protoplast of maize mesophyll cells showed that they may function in the membrane system. CONCLUSIONS: This study provided important information for the further functional analysis of ZmYSL, especially in the spatio-temporal expression and adaptation to nutrient deficiency stress. Our findings provided important genes resources for the maize biofortification.


Assuntos
Arabidopsis , Ferro , Ferro/metabolismo , Zinco/metabolismo , Zea mays/metabolismo , Arabidopsis/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Chemosphere ; 344: 140329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783352

RESUMO

Next-generation risk assessment (NGRA) for environmental chemicals involves a weight of evidence (WoE) framework integrating a suite of new approach methodologies (NAMs) based on points of departure (PoD) obtained from in vitro assays. Among existing NAMs, the omic-based technologies are of particular importance based on the premise that any apical endpoint change indicative of impaired health must be underpinned by some alterations at the omics level, such as transcriptome, proteome, metabolome, epigenome and genome. Transcriptomic assay plays a leading role in providing relatively conservative PoDs compared with apical endpoints. However, it is unclear whether and how parameters measured with other omics techniques predict the cellular response to chemical perturbations, especially at exposure levels below the transcriptomically defined PoD. Multi-omics coverage may provide additional sensitive or confirmative biomarkers to complement and reduce the uncertainty in safety decisions made using targeted and transcriptomics assays. In the present study, we conducted multi-omics studies of transcriptomics, proteomics and phosphoproteomics on two prototype compounds, coumarin and 2,4-dichlorophenoxyacetic acid (2,4-D), with multiple chemical concentrations and time points, to understand the sensitivity of the three omics techniques in response to chemically-induced changes in HepG2. We demonstrated that, phosphoproteomics alterations occur not only earlier in time, but also more sensitive to lower concentrations than proteomics and transcriptomics when the HepG2 cells were exposed to various chemical treatments. The phosphoproteomics changes appear to approach maximum when the transcriptomics alterations begin to initiate. Therefore, it is proximal to the very early effects induced by chemical exposure. We concluded that phosphoproteomics can be utilized to provide a more complete coverage of chemical-induced cellular alteration and supplement transcriptomics-based health safety decision making.


Assuntos
Socorristas , Proteômica , Humanos , Proteômica/métodos , Transcriptoma , Proteoma , Perfilação da Expressão Gênica
6.
J Plant Physiol ; 290: 154115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864879

RESUMO

Chlorophyll is the most important carrier of photosynthesis in plants and is therefore vital for plant growth and development. Synthesis of 5-aminolevulinic acid (ALA) is initiated and catalyzed by glutamyl-tRNA reductase (GluTR) and is the rate-limiting step in chlorophyll biosynthesis. GluTR is controlled by several regulating factors. Although many studies have investigated the structure and function of GluTR in plants, the maize (Zea mays L.) GluTR has not yet been reported. Here, we isolated and identified the first loss-of-function mutant of GluTR in plants from a maize mutagenic population. The stop-gain mutation in ZmGluTR1 resulted in leaf etiolation throughout the growing season. The level of intermediates of chlorophyll biosynthesis and photosynthetic pigments decreased markedly and abnormal chloroplast structure was also observed in the mutants. Further analysis revealed that the deletion of carboxyl terminal (C-terminal) led to premature transcription termination and this hindered the interaction with FLUORESCENT (FLU), thereby influencing the stability of mutated ZmGluTR1 and leading to abolish interaction with GluTR-binding protein (GluBP). Moreover, mutations in the catalytic domain or nicotinamide adenine dinucleotide phosphate (NADPH) binding domain were lethal under normal growth conditions. These results indicate that ZmGluTR1 plays a fundamental role in chlorophyll biosynthesis and maize development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Zea mays/genética , Zea mays/metabolismo , Proteínas de Transporte/metabolismo , Clorofila/metabolismo
8.
J Org Chem ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699595

RESUMO

An efficient method for the construction of benzo[4,5]imidazo[1,2-a]pyrimidines using N,N-dimethylformamide as a one-carbon source and 2-aminobenzimidazoles and acetophenone as substrates through a one-pot, three-component cascade reaction is described. Spectra investigations indicated the fluorescent properties of selected products, exhibiting quantum yields 0.07-0.16 with maxima absorption at 266-294 nm and emission at 472-546 nm.

9.
Curr Org Synth ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581515

RESUMO

As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.

10.
Mar Genomics ; 70: 101033, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355293

RESUMO

Streptomyces sp. HNA39 is a promising candidate for the production of antineoplastic metabolites screened from a collection of 448 actinomycetes derived from coastal sediments. The complete genome sequence of HNA39 comprises a 7,351,753-bp linear chromosome with a GC content of 71.94%. Whole genome analysis reveals the presence of 29 putative biosynthetic gene clusters (BGCs) encoding secondary metabolites. Among them, a type I PKS BGC shows an 82% similarity with the cyclizidine (CLD) BGC identified from Streptomyces NCIB 11649. LC-MS profiles further supported the production of new CLD congeners. Bafilomycins were also found produced in abundance, corresponding to another type I PKS BGC highly homologous to that of bafilomycin B1 from S. lohii. CLDs are indolizidine alkaloids consisting a fused five- and six-membered ring system with an intriguing cyclopropane terminal linked by a trans-dienic chain. The cyclization mechanism of the cylopropyl ring, one of its pharmacophores, is still unknown. Genome sequencing of the new CLD producer and subsequent comparative analysis of their gene clusters would further our understanding of the chemistry behind cyclopropane formation.


Assuntos
Streptomyces , Streptomyces/genética , Sequência de Bases , Mapeamento Cromossômico , China , Família Multigênica
11.
Chemosphere ; 313: 137359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427571

RESUMO

Omic-based technologies are of particular interest and importance for hazard identification and health risk characterization of chemicals. Their application in the new approach methodologies (NAMs) anchored on cellular toxicity pathways is based on the premise that any apical health endpoint change must be underpinned by some alterations at the omic levels. In the present study we examined the cellular responses to two chemicals, caffeine and coumarin, by generating and integrating multi-omic data from multi-dose and multi-time point transcriptomic, proteomic and phosphoproteomic experiments. We showed that the methodology presented here was able to capture the complete chain of events from the first chemical-induced changes at the phosphoproteome level, to changes in gene expression, and lastly to changes in protein abundance, each with vastly different points of departure (PODs). In HepG2 cells we found that the metabolism of lipids and general cellular stress response to be the dominant biological processes in response to caffeine and coumarin exposure, respectively. The phosphoproteomic changes were detected early in time, at very low doses and provided a fast, adaptive cellular response to chemical exposure with 7-37-fold lower points of departure comparing to the transcriptomics. Changes in protein abundance were found much less frequently than transcriptomic changes. While challenges remain, our study provides strong and novel evidence supporting the notion that these three omic technologies can be used in an integrated manner to facilitate a more complete understanding of pathway perturbations and POD determinations for risk assessment of chemical exposures.


Assuntos
Segurança Química , Proteômica , Transcriptoma , Cafeína/toxicidade , Perfilação da Expressão Gênica/métodos , Medição de Risco
12.
Org Biomol Chem ; 20(32): 6413-6417, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876433

RESUMO

A green and efficient method for the synthesis of oxadiazaborole, dioxazaborinine, and oxadiazaborinine from the reactions of phenylboronic acid with amidoxime, α-hydroxyl oxime and α-hydroxyl hydrazone, respectively, is described. The reactions were performed under catalyst-free and mild conditions. All products can be rapidly purified by filtration and washing. In addition, a set of iminoboronates were prepared following a one-pot multicomponent reaction procedure using α-hydroxyl hydrazone, salicylaldehyde and boronic acid derivatives as starting materials and their photophysical properties were assessed. Then, cross-coupling reactions can be carried out smoothly on some target compounds, which may help develop new boron masking strategies.


Assuntos
Boro , Hidrazonas , Catálise
13.
Plant J ; 111(5): 1296-1307, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793378

RESUMO

Because of their high efficiency during chromosome doubling, immature haploid maize (Zea mays L.) embryos are useful for doubled haploid production. The R1-nj marker is commonly used in doubled haploid breeding and has improved the efficiency of haploid identification. However, its effectiveness is limited by genetic background and environmental factors. We addressed this technical challenge by developing an efficient and accurate haploid embryo identification marker through co-expression of two transcription factor genes (ZmC1 and ZmR2) driven by the embryo-aleurone-specific bidirectional promoter PZmBD1 ; these factors can activate anthocyanin biosynthesis in the embryo and aleurone layer during early seed development. We developed a new haploid inducer, Maize Anthocyanin Gene InduCer 1 (MAGIC1), by introducing the transgenes into the haploid inducer line CAU6. MAGIC1 could identify haploids at 12 days after pollination, which is nine days earlier than CAU6. Importantly, MAGIC1 increased haploid identification accuracy to 99.1%, compared with 88.3% for CAU6. In addition, MAGIC1 could effectively overcome the inhibition of anthocyanin synthesis in some germplasms. Furthermore, an upgraded anthocyanin marker was developed from ZmC1 and ZmR2 to generate MAGIC2, which could identify haploids from diploids due to differential anthocyanin accumulation in immature embryos, coleoptiles, sheaths, roots, leaves, and dry seeds. This haploid identification system is more efficient and accurate than the conventional R1-nj-based method, and it simplifies the haploid identification process. Therefore, this system provides technical support for large-scale doubled haploid line production.


Assuntos
Antocianinas , Zea mays , Antocianinas/genética , Haploidia , Melhoramento Vegetal , Fatores de Transcrição/genética , Zea mays/genética
14.
Plant Cell Physiol ; 63(4): 521-534, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35137187

RESUMO

Iron (Fe) is an essential micronutrient for plant growth. Iron-regulated transporters (IRTs) play important roles in Fe2+ uptake and transport in strategy I plants. Maize (Zea mays) belongs to a strategy II plant, in which mugineic acid (MA)-Fe3+ uptake is mainly carried out by Yellow Stripe 1 (YS1). However, ZmIRT1 was previously identified by our laboratory. In this study, we isolated a novel gene from maize (ZmIRT2), which is highly homologous to OsIRT2 and ZmIRT1. ZmIRT2 was expressed in roots and anther and was induced by Fe and zinc (Zn) deficiencies. ZmIRT2-GFP fusion protein localized to the plasma membrane and endoplasmic reticulum. ZmIRT2 reversed growth defects involving Zn and Fe uptake in mutant yeast. ZmIRT2 overexpression in maize led to elevated Zn and Fe levels in roots, shoots and seeds of transgenic plants. Transcript levels of ZmIRT1 were elevated in roots, while levels of YS1 were reduced in shoots of ZmIRT2 transgenic plants. Our results imply that ZmIRT2 may function solely with ZmIRT1 to mediate Fe uptake in roots. ZmIRT1, ZmIRT2 and ZmYS1 may function in a cooperative manner to maintain Zn and Fe homeostasis in ZmIRT2 overexpressing plants. Furthermore, ZmIRT2 could be used in fortification efforts to elevate Zn and Fe levels in crop plants.


Assuntos
Ferro , Zea mays , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zinco/metabolismo
15.
Plant Physiol ; 189(2): 611-627, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218364

RESUMO

Mitochondrial function relies on the assembly of electron transport chain complexes, which requires coordination between proteins encoded by the mitochondrion and those of the nucleus. Here, we cloned a maize (Zea mays) cytochrome c maturation FN stabilizer1 (CNS1) and found it encodes a pentatricopeptide repeat (PPR) protein. Members of the PPR family are widely distributed in plants and are associated with RNA metabolism in organelles. P-type PPR proteins play essential roles in stabilizing the 3'-end of RNA in mitochondria; whether a similar process exists for stabilizing the 5'-terminus of mitochondrial RNA remains unclear. The kernels of cns1 exhibited arrested embryo and endosperm development, whereas neither conventional splicing deficiency nor RNA editing difference in mitochondrial genes was observed. Instead, most of the ccmFN transcripts isolated from cns1 mutant plants were 5'-truncated and therefore lacked the start codon. Biochemical and molecular data demonstrated that CNS1 is a P-type PPR protein encoded by nuclear DNA and that it localizes to the mitochondrion. Also, one binding site of CNS1 located upstream of the start codon in the ccmFN transcript. Moreover, abnormal mitochondrial morphology and dramatic upregulation of alternative oxidase genes were observed in the mutant. Together, these results indicate that CNS1 is essential for reaching a suitable level of intact ccmFN transcripts through binding to the 5'-UTR of the RNAs and maintaining 5'-integrity, which is crucial for sustaining mitochondrial complex III function to ensure mitochondrial biogenesis and seed development in maize.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Zea mays , Códon de Iniciação/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Splicing de RNA , Sementes/metabolismo , Zea mays/metabolismo
16.
BMC Plant Biol ; 22(1): 37, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039017

RESUMO

BACKGROUND: Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles. CONCLUSIONS: Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.


Assuntos
Genoma de Planta/genética , Ferro/metabolismo , Família Multigênica/genética , Proteínas de Plantas/genética , Zea mays/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Homeostase , Deficiências de Ferro , Filogenia , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão , Sideróforos/metabolismo , Transaminases/genética , Transaminases/metabolismo , Zea mays/enzimologia , Zea mays/fisiologia
17.
J Integr Plant Biol ; 63(12): 2031-2037, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34850567

RESUMO

Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.


Assuntos
Zea mays , Zeína , Endosperma/genética , Endosperma/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/genética , Zeína/metabolismo
18.
Hortic Res ; 8(1): 131, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059642

RESUMO

Weeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.

19.
Ann Clin Biochem ; 58(5): 434-444, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33827266

RESUMO

BACKGROUND: Recently, studies on COVID-19 have focused on the epidemiology of the disease and clinical characteristics of patients, as well as on the risk factors associated with mortality during hospitalization in critical COVID-19 cases. However, few research has been performed on the prediction of disease progression in particular group of patients in the early stages of COVID-19. METHODS: The study included 338 patients with COVID-19 treated at two hospitals in Wuhan, China, from December 2019 to March 2020. Predictors of the progression of COVID-19 from mild to severe stages were selected by the logistic regression analysis. RESULTS: COVID-19 progression to severe and critical stages was confirmed in 78 (23.1%) patients. The average value of the neutrophil-to-lymphocyte ratio (NLR) was higher in patients in the disease progression group than in the improvement group. Multivariable logistic regression analysis revealed that elevated NLR, LDH and IL-10 were independent predictors of disease progression. The optimal cut-off value of NLR was 3.75. The values of the area under the curve, reflecting the accuracy of predicting COVID-19 progression by NLR was 0.739 (95%CI: 0.605-0.804). The risk model based on NLR, LDH and IL-10 had the highest area under the ROC curve. CONCLUSIONS: The performed analysis demonstrates that high concentrations of NLR, LDH and IL-10 were independent risk factors for predicting disease progression in patients at the early stage of COVID-19. The risk model combined with NLR, LDH and IL-10 improved the accuracy of the prediction of disease progression in patients in the early stages of COVID-19.


Assuntos
COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Adulto , Idoso , COVID-19/sangue , COVID-19/imunologia , China/epidemiologia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Interleucina-10/sangue , L-Lactato Desidrogenase/sangue , Modelos Logísticos , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Pontuação de Propensão , Fatores de Risco
20.
Medicine (Baltimore) ; 100(14): e25335, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33832108

RESUMO

ABSTRACT: The systemic immune-inflammation index (SII) is an independent prognostic predictor of hepatocellular carcinoma (HCC). The present investigation examined whether an association exists between preoperative SII value and postoperative acute kidney injury (pAKI) in HCC patients.The study included 479 hepatitis B virus (HBV)-associated HCC patients undergoing hepatectomy. The SII was calculated as P × N/L, where P, N, and L represent the counts of platelets, neutrophils, and lymphocytes in routine blood test, respectively. After propensity score matching, logistic regression analysis was used to explore independent predictors of pAKI in HCC patients.pAKI was confirmed in 51 patients (10.8%). The average SII value was higher in patients with pAKI than patients without pAKI. After multivariate logistic regression analysis, SII, history of hypertension, and tumor size, among others, were found to be predictors of pAKI. The optimal threshold value of SII for predicting pAKI was found to be 547.84 × 109/L. Multivariate analysis performed after propensity score matching confirmed that SII ≥ 547.84 × 109/L was an independent predictor of pAKI.The preoperative SII qualifies as a novel, independent predictor of pAKI in HCC patients with HBV infection who underwent hepatectomy.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Carcinoma Hepatocelular/cirurgia , Indicadores Básicos de Saúde , Hepatectomia/efeitos adversos , Neoplasias Hepáticas/cirurgia , Injúria Renal Aguda/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Comorbidade , Hepatite B/complicações , Humanos , Contagem de Leucócitos , Testes de Função Hepática , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Modelos Logísticos , Pessoa de Meia-Idade , Período Pós-Operatório , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença , Carga Tumoral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...