Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106843, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696148

RESUMO

In the present study, the undescribed schitriterpenoids, kadsujanonols A-I (1-9), and eleven reported compounds (10-20) were isolated from K. japonica L. vines. Their structures of 3,4-seco-schitriterpenoids were elucidated mainly by spectroscopic analyses including 1H-, 13C-, and 2D-NMR, IR, HRESIMS spectra. The spatial configurations were determined by the single-crystal X-ray diffraction analysis of kadsujapnonol A (1), 15, 17, and 18, CD data and computational analysis. Furthermore, all isolates were evaluated for the anti-neuroinflammatory activity on LPS-stimulated NO production in BV2 microglial cells and compounds 2, 4, 5, 7, 9, 11, 13-16, and 18 exposed better or comparable suppression abilities than PDTC. Among them, kadlongilactone B (14) showed the best significant inhibiting ability (IC50 = 0.87 µg/mL) and the effect is through the attenuation of the inflammatory transcription factor p65NF-κB. Preliminary structure-activity relationship revealed that δ-lactone at the side chain and 7-member lactone at C-3/C-4, and 3,4:9,10 ring opening are important.


Assuntos
Kadsura , Kadsura/química , Relação Estrutura-Atividade , Microglia , Lactonas , Lipopolissacarídeos/farmacologia , Estrutura Molecular
2.
Front Chem ; 11: 1223335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426336

RESUMO

The Euphorbiaceae plant Euphorbia neriifolia L. is distributed widely in India, Thailand, Southeastern China, and Taiwan and used as a carminative and expectorant to treat several inflammation-related diseases, such as gonorrhoea, asthma, and cancer. In the course of our search for potential anti-inflammatory agents from the titled plant, 11 triterpenes from the stem of E. neriifolia were isolated and reported in our previous endeavor. Given its rich abundance in triterpenoids, the ethanolic extract in this follow-up exploration has led to the isolation of additional eight triterpenes, including six new euphanes-neritriterpenols H and J-N (1 and 3-7)-one new tirucallane, neritriterpenol I (2), and a known compound, 11-oxo-kansenonol (8). Their chemical structures were elucidated on the basis of spectroscopic data, including 1D- and 2D NMR, and HRESIMS spectra. The absolute stereochemistry of neritriterpenols was determined by single-crystal X-ray diffraction analysis, ICD spectra, and DP4+ NMR data calculations. Compounds 1-8 were also evaluated for their anti-inflammatory activity by using lipopolysaccharide (LPS)-stimulated IL-6 and TNF-α on RAW 264.7 macrophage cells. Intriguingly, the euphane-type triterpenes (1 and 3-8) showed an inhibitory effect on LPS-induced IL-6 but not on TNF-α, while tirucallane-type triterpene 2 showed strong inhibition on both IL-6 and TNF-α.

3.
Nat Commun ; 14(1): 2528, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137912

RESUMO

Oxidized cysteine residues are highly reactive and can form functional covalent conjugates, of which the allosteric redox switch formed by the lysine-cysteine NOS bridge is an example. Here, we report a noncanonical FAD-dependent enzyme Orf1 that adds a glycine-derived N-formimidoyl group to glycinothricin to form the antibiotic BD-12. X-ray crystallography was used to investigate this complex enzymatic process, which showed Orf1 has two substrate-binding sites that sit 13.5 Å apart unlike canonical FAD-dependent oxidoreductases. One site could accommodate glycine and the other glycinothricin or glycylthricin. Moreover, an intermediate-enzyme adduct with a NOS-covalent linkage was observed in the later site, where it acts as a two-scissile-bond linkage facilitating nucleophilic addition and cofactor-free decarboxylation. The chain length of nucleophilic acceptors vies with bond cleavage sites at either N-O or O-S accounting for N-formimidoylation or N-iminoacetylation. The resultant product is no longer sensitive to aminoglycoside-modifying enzymes, a strategy that antibiotic-producing species employ to counter drug resistance in competing species.


Assuntos
Aminoglicosídeos , Cisteína , Cisteína/química , Ligantes , Sítios de Ligação , Antibacterianos , Cristalografia por Raios X , Glicina
4.
Nat Prod Res ; : 1-8, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36606546

RESUMO

The spirohydantoin-containing cucurbitane-type triterpenoid, kaguacidine A (1), was isolated and purified from 95% ethanol extract of vines of Momordica charantia L. (Cucurbitaceae). Its unprecedented chemical structure, a spirohydantoin substituent at C-23 of cucurbitane, was elucidated by extensive spectroscopic analyses, including HRESIMS, IR, optical rotation, 1 D- and 2 D-NMR spectra. The possible biosynthetic pathway is deduced and may be attributed to the metabolic activity of microbial symbionts in M. charantia L. Compound 1 was evaluated for anti-inflammatory activity against LPS-induced NO production in RAW 264.7 cells and anti-proliferative activity against four cancer cell lines, including HEp-2, MCF-7, Hep-G2, and WiDr. Compound 1 showed moderate anti-inflammatory activity with an IC50 value of 18.5 ± 0.4 µg/mL and weak anti-proliferative activity against MCF-7, HEp-2, Hep-G2, and WiDr with IC50 values of >40, 33.8 ± 0.6, 31.0 ± 0.7, and 27.0 ± 0.7 µM, respectively.

5.
Front Chem ; 10: 1003356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186589

RESUMO

Mesona procumbens Hemsley is a plant conventionally processed to provide popular food materials and herbal medicines in Asia. In this study, six triterpene acids, including five new ones (mesonaic acids D-H, 1-5), and one proximadiol-type sesquiterpene (7) were isolated from the methanolic extract of the air-dried M. procumbens. Chemical structures of 1‒7 were established by spectroscopic methods, especially 2D NMR techniques (1H-1H COSY, HSQC, HMBC, and NOESY) and HRESIMS. Concerning their biological activities, compounds 1, 2, 6, and 7 were examined manifesting high inhibition toward the pro-inflammatory NO production with EC50 values ranging from 12.88 to 21.21 µM, outrunning the positive control quercetin (24.12 µM). The mesoeudesmol B (7) identified from M. procumbens is the very first example, which exhibited high anti-inflammatory activity diminishing the level of the lipopolysaccharide-induced NO in RAW264.7 macrophage cells, thereby suppressing the secretion of pro-inflammatory cytokines TNF-α and IL-6 and the level of two critical downstream inflammatory mediators iNOS and COX-2.

6.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36297330

RESUMO

Hybrid natural products produced via mixed biosynthetic pathways are unique and often surprise one with unexpected medicinal properties in addition to their fascinating structural complexity/diversity. In view of chemical structures, hybridization is a way of diversifying natural products usually through dimerization of two similar or dissimilar subcomponents through a C-C or N-C covalent linkage. Here, we report four structurally attractive diterpene-alkaloid conjugates polyalongarins A-D (1-4), clerodane-containing aporphine and proaporphine alkaloids, the first of its kind from the barks of Taiwanese Polyalthia longifolia (Sonn.) Thwaites var. pendula. In addition to conventional spectroscopic analysis, single crystal X-ray crystallography was employed to determine the chemical structures and stereo-configurations of 1. Compounds 1-4 were subsequently subjected to in vitro antiviral examination against DENV2 by evaluating the expression level of the NS2B protein in DENV2-infected Huh-7 cells. These compounds display encouraging anti-DENV2 activity with superb EC50 (2.8-6.4 µM) and CC50 values (50.4-200 µM). The inhibitory mechanism of 1-4 on NS2B was further explored drawing on in-silico molecular docking analysis. Based on calculated binding affinities and predicted interactions between the functional groups of 1-4 and the allosteric-site residues of the DENV2 NS2B-NS3 protease, our analysis concludes that the clerodane-aporphine/proaporphine-type hybrids are novel and effective DENV NS2B-NS3 protease inhibitors.

7.
ACS Omega ; 7(37): 32970-32987, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157785

RESUMO

Tunicamycin (TUN) is a nucleoside antibiotic with a complex structure comprising uracil, tunicamine sugar, N-acetylglucosamine (GlcNAc), and fatty acyl tail moieties. TUN, known as a canonical inhibitor, blocks vital functions of certain transmembrane protein families, for example, the insect enzyme dolichyl phosphate α-N-acetylglucosaminylphosphotransferase (DPAGT1) of Spodoptera frugiperda and the bacterial enzyme phospho-N-acetylmuramoylpentapeptide translocase (MraYCB) of Clostridium bolteae. Accurate description of protein-drug interactions has an immense impact on structure-based drug design, while the main challenge is to create proper topology and parameter entries for TUN in modeling protein-TUN interactions given the structural complexity. Starting from DPAGT1-TUN and MraYCB-TUN crystal structures, we first sketched these structural complexes on the basis of the CHARMM36 force field and optimized each of them using quantum mechanics/molecular mechanics (QM/MM) calculations. By continuing calculations on the active site (QM region) of each optimized structure, we specified the characteristics of intermolecular interactions contributing to the binding of TUN to each active site by quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses at the M06-2X/6-31G** level. The results outlined that TUN insertion into each active site requires multiple weak, moderate, and strong hydrogen bonds accompanying charge-dipole, dipole-dipole, and hydrophobic interactions among different TUN moieties and adjacent residues. The water-mediated interactions also play central roles in situating the uracil and tunicamine moieties of TUN within the DPAGT1 active site as well as in preserving the uracil-binding pocket in the MraYCB active site. The TUN binds more strongly to DPAGT1 than to MraYCB. The information garnered here is valuable particularly for better understanding mode of action at the molecular level, as it is conducive to developing next generations of nucleoside antibiotics.

8.
Appl Environ Microbiol ; 88(17): e0080622, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000868

RESUMO

Albofungin, a hexacyclic aromatic natural product, exhibits broad-spectrum antimicrobial activity. Its biosynthesis, regulation, and resistance remain elusive. Here, we report the albofungin (abf) biosynthetic gene cluster (BGC) from its producing strain Streptomyces tumemacerans JCM5050. The nascent abf BGC encodes 70 putative genes, including regulators, transporters, type II polyketide synthases (PKSs), oxidoreductase, and tailoring enzymes. To validate the intactness and functionality of the BGC, we developed an Escherichia coli-Streptomyces shuttle bacterial artificial chromosome system, whereby the abf BGC was integrated into the genome of a nonproducing host via heterologous conjugation, wherefrom albofungin can be produced, confirming that the BGC is in effect. We then delimited the boundaries of the BGC by means of in vitro CRISPR-Cas9 DNA editing, concluding a minimal but essential 60-kb abf BGC ranging from orfL to abf58. The orfA gene encoding a reduced flavin adenine dinucleotide (FADH2)-dependent halogenase was examined and is capable of transforming albofungin to halogen-substituted congeners in vivo and in vitro. The orfL gene encoding a transporter was examined in vivo. The presence/absence of orfA or orfL demonstrated that the MIC of albofungin is subject to alteration when an extracellular polysaccharide intercellular adhesin was formed. Despite that halogenation of albofungin somewhat increases binding affinity to transglycosylase (TGase), albofungin with/without a halogen substituent manifests similar in vitro antimicrobial activity. Halogenation, however, limits overall dissemination and effectiveness given a high secretion rate, weak membrane permeability, and high hydrophobicity of the resulting products, whereby the functions of orfA and orfL are correlated with drug detoxification/resistance for the first time. IMPORTANCE Albofungin, a natural product produced from Streptomycetes, exhibits bioactivities against bacteria, fungi, and tumor cells. The biosynthetic logic, regulations, and resistance of albofungin remain yet to be addressed. Herein, the minimal albofungin (abf) biosynthetic gene cluster (BGC) from the producing strain Streptomyces tumemacerans JCM5050 was precisely delimited using the Escherichia coli-Streptomyces shuttle bacterial artificial chromosome system, of which the gene essentiality was established in vivo and in vitro. Next, we characterized two genes orfA and orfL encoded in the abf BGC, which act as a reduced flavin adenine dinucleotide (FADH2)-dependent halogenase and an albofungin-congeners transporter, respectively. While each testing microorganism exhibited different sensitivities to albofungins, the MIC values of albofungins against testing strains with/without orfA and/or orfL were subject to considerable changes. Halogen-substituted albofungins mediated by OrfA manifested overall compromised dissemination and effectiveness, revealing for the first time that two functionally distinct proteins OrfA and OrfL are associated together, exerting a novel "belt and braces" mechanism in antimicrobial detoxification/resistance.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Streptomyces , Anti-Infecciosos/metabolismo , Produtos Biológicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Halogenação , Halogênios/metabolismo , Família Multigênica , Streptomyces/genética , Xantenos
9.
Food Chem X ; 14: 100286, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35330883

RESUMO

Four novel triterpene glycosides, taimordisins A-D (1-4), were discovered from fresh fruits of Taiwanese Momordica charantia. The chemical framework and relative stereochemistry of these four natural products were isolated, purified, and determined by using various separation and spectroscopy techniques. Each of them features a unique bicyclic-fused or trifuso-centro-fused ring system. Notably, 1 and 2 are cucurbitane-based compounds possessing a new C-24 and C-2″ carbon-carbon linkage with 5-hydroxy-2-(hydroxymethyl)tetrahydro-4H-pyran-4-one and 6-(hydroxymethyl)tetrahydro-4H-pyran-3,4,4-triol units, respectively, and represented an unprecedented molecular skeleton. In terms of biosynthesis, they all originate from a common precursor 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-ß-glucopyranoside. Of two sugar moieties, the one at 23-O-ß-glucopyranoside grants each individual congener uniqueness likely through microbial symbiont-mediated intramolecular transformation into two major types of furo[2,3-b]pyranone and furo[3,2-c]pyranone derivatives. These new products possess desirable anti-inflammatory biological activities in addition to being generally regarded as safe.

10.
Biomedicines ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203422

RESUMO

Kasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D-chiro-inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis for an epimerase, KasQ, that primes KSM biosynthesis rather than the previously proposed KasF/H, which instead acts as an acetyltransferase, inactivating KSM. Our biochemical and biophysical analysis determined that KasQ converts UDP-GlcNAc to UDP-ManNAc as the initial step in the biosynthetic pathway. The isotope-feeding study further confirmed that 13C, 15N-glucosamine/UDP-GlcNH2 rather than glucose/UDP-Glc serves as the direct precursor for the formation of KSM. Both KasF and KasH were proposed, respectively, converting UDP-GlcNH2 and KSM to UDP-GlcNAc and 2-N'-acetyl KSM. Experimentally, KasF is unable to do so; both KasF and KasH are instead KSM-modifying enzymes, while the latter is more specific and reactive than the former in terms of the extent of resistance. The information gained here lays the foundation for mapping out the complete KSM biosynthetic pathway.

11.
ACS Chem Biol ; 17(1): 138-146, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34994196

RESUMO

Capreomycin (CMN) is an important second-line antituberculosis antibiotic isolated from Saccharothrix mutabilis subspecies capreolus. The gene cluster for CMN biosynthesis has been identified and sequenced, wherein the cph gene was annotated as a phosphotransferase likely engaging in self-resistance. Previous studies reported that Cph inactivates two CMNs, CMN IA and IIA, by phosphorylation. We, herein, report that (1) Escherichia coli harboring the cph gene becomes resistant to both CMN IIA and IIB, (2) phylogenetic analysis regroups Cph to a new clade in the phosphotransferase protein family, (3) Cph shares a three-dimensional structure akin to the aminoglycoside phosphotransferases with a high binding affinity (KD) to both CMN IIA and IIB at micromolar levels, and (4) Cph utilizes either ATP or GTP as a phosphate group donor transferring its γ-phosphate to the hydroxyl group of CMN IIA. Until now, Cph and Vph (viomycin phosphotransferase) are the only two known enzymes inactivating peptide-based antibiotics through phosphorylation. Our biochemical characterization and structural determination conclude that Cph confers the gene-carrying species resistance to CMN by means of either chemical modification or physical sequestration, a naturally manifested belt and braces strategy. These findings add a new chapter into the self-resistance of bioactive natural products, which is often overlooked while designing new bioactive molecules.


Assuntos
Actinobacteria/enzimologia , Antibióticos Antituberculose/metabolismo , Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/metabolismo , Capreomicina/metabolismo , Capreomicina/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Actinobacteria/efeitos dos fármacos , Actinobacteria/metabolismo , Antibióticos Antituberculose/química , Proteínas de Bactérias/genética , Capreomicina/química , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Conformação Proteica
12.
Sci Rep ; 12(1): 429, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013458

RESUMO

Having infected by Helicobacter pylori, the infection often leads to gastritis, gastric ulcer, or even gastric cancer. The disease is typically treated with antibiotics as they used to effectively inhibit or kill H. pylori, thus reducing the incidence of gastric adenoma and cancer to significant extent. H. pylori, however, has developed drug resistance to many clinically used antibiotics over the years, highlighting the crisis of antibiotic failure during the H. pylori treatment. We report here that the fucoidan from Sargassum hemiphyllum can significantly reduce the infection of H. pylori without developing to drug resistance. Fucoidan appears to be a strong anti-inflammation agent as manifested by the RAW264.7 cell model examination. Fucoidan can prohibit H. pylori adhesion to host cells, thereby reducing the infection rate by 60%, especially in post treatment in the AGS cell model assay. Mechanistically, fucoidan intervenes the adhesion of BabA and AlpA of H. pylori significantly lowering the total count of H. pylori and the level of IL-6 and TNF-α in vivo. These results all converge on the same fact that fucoidan is an effective agent in a position to protect the stomach from the H. pylori infection by reducing both the total count and induced inflammation.


Assuntos
Antineoplásicos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Polissacarídeos/uso terapêutico , Sargassum/química , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Helicobacter pylori/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Células RAW 264.7 , Estômago/efeitos dos fármacos , Estômago/imunologia , Estômago/metabolismo
13.
Commun Chem ; 5(1): 87, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697788

RESUMO

Caprazamycin is a nucleoside antibiotic that inhibits phospho-N-acetylmuramyl-pentapeptide translocase (MraY). The biosynthesis of nucleoside antibiotics has been studied but is still far from completion. The present study characterized enzymes Cpz10, Cpz15, Cpz27, Mur17, Mur23 out of caprazamycin/muraymycin biosynthetic gene cluster, particularly the nonheme αKG-dependent enzyme Cpz10. Cpz15 is a ß-hydroxylase converting uridine mono-phosphate to uridine 5' aldehyde, then incorporating with threonine by Mur17 (Cpz14) to form 5'-C-glycyluridine. Cpz10 hydroxylates synthetic 11 to 12 in vitro. Major product 13 derived from mutant Δcpz10 is phosphorylated by Cpz27. ß-Hydroxylation of 11 by Cpz10 permits the maturation of caprazamycin, but decarboxylation of 11 by Mur23 oriented to muraymycin formation. Cpz10 recruits two iron atoms to activate dioxygen with regio-/stereo-specificity and commit electron/charge transfer, respectively. The chemo-physical interrogations should greatly advance our understanding of caprazamycin biosynthesis, which is conducive to pathway/protein engineering for developing more effective nucleoside antibiotics.

14.
Int Immunopharmacol ; 101(Pt B): 108362, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801417

RESUMO

Atopic dermatitis (AD) is a T helper (Th) 2 cell-mediated allergic disease, which features increased number of immunocytes and level of Th2-associated cytokines. Fucoidan is well known a naturally occurring agent effectively ameliorating many AD symptoms. Though these alleviative effects are exhilarating, the mechanisms behind, however, are still rather limited. In this study, we report that fucoidan derived from Cladosiphon okamuranus (FT) inhibits nitric oxide (NO) production by exerting its anti-inflammatory ability. Topical application on animals show that FT promotes skin repair, reduces immunocyte proliferation, and decreases serum IgE level. In histological analysis, FT favorably reduces epidermal hyperplasia and eosinophilic infiltration. The pharmacodynamics mechanism of FT is determined by means of down-regulating AD-associated cytokines (IL-4, IL-5, IL-22, IL-33, and TSLP) and up-regulating TGF-ß1 level. Moreover, FT can regulate systemic immunity by enhancing tolerogenic dendritic cells (Tol-DCs) to activate regulatory T cells (Treg) differentiation and to decrease the population of Th22 and memory B cells. Overall, topical application of FT is able to enhance Treg secreting TGF-ß1 and to down-regulate Th2 cell-mediated immunity so that AD symptoms are significantly alleviated. Thereby, FT is an ideal drug candidate potentially replacing or complementing corticosteroids to be developed and used as a therapeutic agent to treat AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Polissacarídeos/administração & dosagem , Polissacarídeos/uso terapêutico , Alga Marinha/química , Administração Tópica , Animais , Antiulcerosos/administração & dosagem , Antiulcerosos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/toxicidade , Esquema de Medicação , Masculino , Células B de Memória/efeitos dos fármacos , Células B de Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Polissacarídeos/química , Células RAW 264.7 , Linfócitos T Reguladores , Células Th2/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
Int J Biol Macromol ; 189: 537-543, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34416266

RESUMO

Atopic dermatitis (AD) is a long-term allergic skin disorder that occurs most frequently in children. Currently, the common treatment of AD is corticosteroids; however, the drugs cause serious side effects. Therefore, there are many patients who seek complementary and alternative treatments such as healthy food. We report that fucoidan from Cladosiphon okamuranus (COP) exhibit exceptional immuno-modulatory effects significantly improving atopic dermatitis (AD) at both in vitro and in vivo levels: First, we performed the P815 cell degranulation assay, of which the results revealed that COP possesses anti-degranulation activity suggesting COP is very conducive to relieving allergic reactions of AD. Next, we performed the animal model examination, of which AD was significantly improved, suggesting COP can focally and globally modulate the immune systems of animals. The systemic improvements were manifested clearly by decreased epidermal hyperplasia, reduced infiltration of eosinophils, and decreased expression of AD-associated cytokines. Notably, COP reduced epidermal hyperplasia by downregulating the expression of IL-22. COP displayed therapeutic effects, which is comparable to corticosteroids but lack corticosteroid side effects, such as weight loss in our animal study. COP is multitudinous immunomodulatory abilities to serve as a healthy food supplement at the current stage, not least beneficial to atopic dermatitis.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Imunomodulação , Phaeophyceae/química , Polissacarídeos/uso terapêutico , Administração Oral , Animais , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Citocinas/sangue , Citocinas/metabolismo , Dermatite Atópica/sangue , Dinitroclorobenzeno , Modelos Animais de Doenças , Epiderme/efeitos dos fármacos , Epiderme/patologia , Histamina/metabolismo , Imunoglobulina E/sangue , Imunomodulação/efeitos dos fármacos , Interleucina-4/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Peso Molecular , Monossacarídeos/análise , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia
16.
Chembiochem ; 22(14): 2415-2419, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915022

RESUMO

Secondary metabolites are structurally diverse natural products (NPs) and have been widely used for medical applications. Developing new tools to enrich NPs can be a promising solution to isolate novel NPs from the native and complex samples. Here, we developed native and deuterated chemoselective labeling probes to target phenol-containing glycopeptides by the ene-type labeling used in proteomic research. The clickable azido-linker was included for further biotin functionalization to facilitate the enrichment of labeled substrates. Afterward, our chemoselective method, in conjunction with LC-MS and MSn analysis, was demonstrated in bacterial cultures. A vancomycin-related phenol-containing glycopeptide was labeled and characterized by our labeling strategy, showing its potential in glycopeptide discovery in complex environments.


Assuntos
Fenol
17.
Cancers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872195

RESUMO

(1) Background: Radiotherapy (RT) is one of the major treatments for non-small cell lung cancer, but RT-associated toxicities usually impede its anticancer effect. Nutrient supplementation has been applied for cancer prevention or a complementary measure to anticancer therapy. Here, we explored the influence of total nutrition supplementation before and after cancer occurrence on the anticancer benefit and side effects of RT. (2) Methods: C57BL/6JNarl mice were inoculated with Lewis lung carcinoma cells and then treated with radiotherapy. TNuF, a total nutrition formula, was prescribed by oral gavage. In the preventive groups, TNuF supplementation started from seven days before tumor inoculation. In the complementary groups, TNuF supplementation began after tumor inoculation. (3) Results: TNuF successfully enhanced the anticancer effect of RT against primary tumor and lung metastasis. Additionally, the complementary supplement improved the high serum TNF-α level and the wasting of sartorius muscle in mice receiving RT. In histologic and molecular analysis, TNuF was observed to modulate EGFR, apoptosis, and VEGF and PD-1/PD-L1 pathways. Furthermore, the anticancer benefit of the preventive supplement was comparable to that of the complementary administration. (4) Conclusions: Our results demonstrated that the prescription of the TNuF total nutrition formula before and after cancer diagnosis attains similar benefits in testing subjects with typical anticancer RT. TNuF is also a potential sensitizer to anti-PD-1 immune therapy.

18.
ACS Omega ; 5(36): 22739-22749, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954121

RESUMO

Phospho-N-acetylmuramoyl-pentapeptide translocase (MraYAA) from Aquifex aeolicus is the binding target for the nucleotide antibiotic muraymycin D2 (MD2). MraYAA in the presence of the MD2 ligand has been crystallized and released, while the interactions between the ligand and active-site residues remain less quantitatively and qualitatively defined. We characterized theoretically the key residues involved in noncovalent interactions with MD2 in the MraYAA active site. We applied the quantum theory of atoms in molecules and natural bond orbital analyses based on the density functional theory method on the solved crystal structure of MraY with the MD2 to quantitatively estimate the intermolecular interactions. The obtained results revealed the presence of multiple hydrogen bonds in the investigated active site with strength ranging from van der Waals to covalent limits. Lys70, Asp193, Gly194, Asp196, Gly264, Ala321, Gln305, and His325 are key active-site residues interacting with MD2. Conventional and unconventional hydrogen bonds in addition with charge-dipole and dipole-dipole interactions contribute significantly to stabilize the MD2 binding to the MraYAA active site. It was also found that water molecules inside the active site have substantial effects on its structure stability through hydrogen-bonding interactions with MD2 and the interacting residues.

19.
Protein Sci ; 29(7): 1655-1666, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362037

RESUMO

Though reactive flavin-N5/C4α-oxide intermediates can be spectroscopically profiled for some flavin-assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition-like complexes, the α-ketoacid…N5-FMNox complex (I), the FMNox -N5-aloxyl-C'α- -C4α+ zwitterion (II), and the FMN-N5-ethenol-N5-C4α-epoxide (III), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMNox an alternative reaction center can polarize to an ylide-like mesomer in the active site. In contrast, four distinct flavin-C4α-oxide adducts (IV-VII) from Y128F crystals soaked with selected substrates materialize C4α of FMN an intrinsic reaction center, witnessing oxidation, Baeyer-Villiger/peroxide-assisted decarboxylation, and epoxidation reactions. In conjunction with stopped-flow kinetics, the multifaceted flavin-dependent reaction continuum is physically dissected at molecular level for the first time.


Assuntos
Amycolatopsis/enzimologia , Proteínas de Bactérias/química , Flavinas/química , Oxigenases de Função Mista/química , Domínio Catalítico , Oxirredução
20.
Biomolecules ; 10(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397467

RESUMO

Plant type III polyketide synthases produce diverse bioactive molecules with a great medicinal significance to human diseases. Here, we demonstrated versatility of a stilbene synthase (STS) from Pinus Sylvestris, which can accept various non-physiological substrates to form unnatural polyketide products. Three enzymes (4-coumarate CoA ligase, malonyl-CoA synthetase and engineered benzoate CoA ligase) along with synthetic chemistry was practiced to synthesize starter and extender substrates for STS. Of these, the crystal structures of benzoate CoA ligase (BadA) from Rhodopseudomonas palustris in an apo form or in complex with a 2-chloro-1,3-thiazole-5-carboxyl-AMP or 2-methylthiazole-5-carboxyl-AMP intermediate were determined at resolutions of 1.57 Å, 1.7 Å, and 2.13 Å, respectively, which reinforces its capacity in production of unusual CoA starters. STS exhibits broad substrate promiscuity effectively affording structurally diverse polyketide products. Seven novel products showed desired cytotoxicity against a panel of cancer cell lines (A549, HCT116, Cal27). With the treatment of two selected compounds, the cancer cells underwent cell apoptosis in a dose-dependent manner. The precursor-directed biosynthesis alongside structure-guided enzyme engineering greatly expands the pharmaceutical repertoire of lead compounds with promising/enhanced biological activities.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Coenzima A Ligases/metabolismo , Rodopseudomonas/enzimologia , Acil Coenzima A/química , Acil Coenzima A/genética , Apoptose , Vias Biossintéticas , Domínio Catalítico , Linhagem Celular Tumoral , Forma Celular , Sobrevivência Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação/genética , Policetídeos/química , Policetídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...