Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 333: 118441, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851471

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Toona sinensis (A. Juss.) Roem. Is a deciduous woody plant native to Eastern and Southeastern Asia. Different parts of this plant have a long history of being applied as traditional medicines to treat various diseases. The fruits have been used for antidiabetic, antidiabetic nephropathy (anti-DN), antioxidant, anti-inflammatory, and other activities. AIM OF THE STUDY: The purpose of this study was to investigate the effects of EtOAc (PEAE) and n-BuOH extracts (PNBE) from T. sinensis pericarps (TSP) on kidney injury in high-fat and high-glucose diet (HFD)/streptozotocin (STZ)-induced DN mice by network pharmacology and pharmacological investigations, as well as to further discover active compounds that could ameliorate oxidative stress and inflammation, thereby delaying DN progression by regulating the Nrf2/NF-κB pathway in high glucose (HG)-induced glomerular mesangial cells (GMCs). MATERIALS AND METHODS: The targets of TSP 1-16 with DN were analyzed by network pharmacology. HFD/STZ-induced DN mouse models were established to evaluate the effects of PEAE and PNBE. Six groups were divided into normal, model, PEAE100, PEAE400, PNBE100, and PNBE400 groups. Fasting blood glucose (FBG) levels, organ indices, plasma MDA, SOD, TNF-α, and IL-6 levels, as well as renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-ß1 levels were determined, along with hematoxylin-eosin (H&E) and immunohistochemical (IHC) analysis of kidney sections. Furthermore, GMC activity screening combined with molecular docking was utilized to discover active compounds targeting HO-1, TNF-α, and IL-6. Moreover, western blotting assays were performed to validate the mechanism of Nrf2 and NF-κB in HG-induced GMCs. RESULTS: Network pharmacology predicted that the main targets of PEAE and PNBE in the treatment of DN include IL-6, INS, TNF, ALB, GAPDH, IL-1ß, TP53, EGFR, and CASP3. Additionally, major pathways include AGE-RAGE and IL-17. In vivo experiments, treatment with PEAE and PNBE effectively reduced FBG levels and organ indices, while plasma MDA, SOD, TNF-α, and IL-6 levels, renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-ß1 levels, and renal function were significantly improved. PEAE and PNBE significantly improved glomerular and tubule injury, and inhibited the development of DN by regulating the levels of oxidative stress and inflammation-related factors. In vitro experiments, compound 11 strongly activated HO-1 and inhibited TNF-α and IL-6. The molecular docking results revealed that compound 11 exhibited a high binding affinity towards the targets HO-1, TNF-α, and IL-6 (<-6 kcal/mol). Western blotting results showed compound 11 effectively regulated Nrf2 and NF-κB p65 protein levels, and significantly improved oxidative stress damage and inflammatory responses in HG-induced GMCs. CONCLUSION: PEAE, PNBE, and their compounds, especially compound 11, may have the potential to prevent and treat DN, and are promising natural nephroprotective agents.

2.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338461

RESUMO

Toona sinensis (A. Juss.) Roem., which is widely distributed in China, is a homologous plant resource of medicine and food. The leaves, seeds, barks, buds and pericarps of T. sinensis can be used as medicine with traditional efficacy. Due to its extensive use in traditional medicine in the ancient world, the T. sinensis plant has significant development potential. In this review, 206 compounds, including triterpenoids (1-133), sesquiterpenoids (134-135), diterpenoids (136-142), sterols (143-147), phenols (148-167), flavonoids (168-186), phenylpropanoids (187-192) and others (193-206), are isolated from the T. sinensis plant. The mass spectrum cracking laws of representative compounds (64, 128, 129, 154-156, 175, 177, 179 and 183) are reviewed, which are conducive to the discovery of novel active substances. Modern pharmacological studies have shown that T. sinensis extracts and their compounds have antidiabetic, antidiabetic nephropathy, antioxidant, anti-inflammatory, antitumor, hepatoprotective, antiviral, antibacterial, immunopotentiation and other biological activities. The traditional uses, chemical constituents, compound cracking laws and pharmacological activities of different parts of T. sinensis are reviewed, laying the foundation for improving the development and utilization of its medicinal value.


Assuntos
Compostos Fitoquímicos , Toona , Compostos Fitoquímicos/química , Medicina Tradicional , Antioxidantes/farmacologia , Hipoglicemiantes , Extratos Vegetais/química , Etnofarmacologia
3.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569987

RESUMO

In this study, the cutting parameters for machining deep bottle holes (deep holes with complex profiles and length-to-diameter ratio greater than 10) were optimized based on cutting simulation, a regression analysis genetic algorithm, and experimental validation. The influence of cutting parameters on cutting force and cutting temperature was analyzed using the response surface method (RSM), and the regression prediction model of cutting parameters with cutting force and most cutting temperature was established. Based on this model, multi-objective optimization of cutting force Fx and material removal rate Q was carried out based on a genetic algorithm, and a set of optimal cutting parameters (v = 139.41 m/min, ap = 1.12 mm, f = 0.27 mm/rev) with low cutting force and high material removal rate were obtained. Finally, based on the optimal cutting parameters, the machining of TC4 deep bottle holes with a length-to-diameter (L/D) ratio of 36.36 and a roughness of Ra 3.2 µm was accomplished through a deep hole boring experiment, which verified the feasibility of the selected cutting parameters and provided a certain reference for the machining of this type of parts.

4.
Eur J Med Chem ; 258: 115585, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390510

RESUMO

Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers and has been identified as a crucial anticancer target. In the study, we took SHP2 allosteric inhibitor SHP099 as the lead compound, and 32 1,3,4-thiadiazole derivatives were identified as selective allosteric inhibitors of SHP2. In vitro enzyme activity test showed that some compounds had high inhibition on full length SHP2, and almost no activity on homologous protein SHP1, exhibiting high selectivity. Compound YF704 (4w) had the best inhibition activity, with IC50 value of 0.25 ± 0.02 µM, and also showed strong inhibitory activity on SHP2-E76K and SHP2-E76A, with IC50 values of 6.88 ± 0.69 µM and 1.38 ± 0.12 µM, respectively. CCK8 proliferation test found that multiple compounds would effectively inhibit the proliferation of a variety of cancer cells. Among them, the IC50 values of compound YF704 on MV4-11 and NCI-H358 cells were 3.85 ± 0.34 µM and 12.01 ± 0.62 µM, respectively. Specially, these compounds were sensitive to NCI-H358 cells containing KRASG12C mutation, thus overcoming the problem that SHP099 was insensitive to such cells. Apoptosis experiment showed that compound YF704 would effectively induce apoptosis of MV4-11 cells. Western blot showed that compound YF704 would downregulate the phosphorylation levels of Erk1/2 and Akt in MV4-11 and NCI-H358 cells. Molecular docking study show that compound YF704 would effectively bind to the allosteric region of SHP2 and form hydrogen bond interactions with key residues Thr108, Arg111 and Phe113. Molecular dynamics study further revealed the binding mechanism of SHP2 and compound YF704. In conclusion, we hope to provide potential SHP2 selective inhibitors and provide valuable clues for cancer treatment.


Assuntos
Neoplasias , Tiadiazóis , Humanos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Tiadiazóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Inibidores Enzimáticos/farmacologia
5.
Small ; 19(28): e2300023, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191227

RESUMO

Uncontrolled ion transport and susceptible SEI films are the key factors that induce lithium dendrite growth, which hinders the development of lithium metal batteries (LMBs). Herein, a TpPa-2SO3 H covalent organic framework (COF) nanosheet adhered cellulose nanofibers (CNF) on the polypropylene separator (COF@PP) is successfully designed as a battery separator to respond to the aforementioned issues. The COF@PP displays dual-functional characteristics with the aligned nanochannels and abundant functional groups of COFs, which can simultaneously modulate ion transport and SEI film components to build robust lithium metal anodes. The Li//COF@PP//Li symmetric cell exhibits stable cycling over 800 h with low ion diffusion activation energy and fast lithium ion transport kinetics, which effectively suppresses the dendrite growth and improves the stability of Li+ plating/stripping. Moreover, The LiFePO4//Li cells with COF@PP separator deliver a high discharge capacity of 109.6 mAh g-1 even at a high current density of 3 C. And it exhibits excellent cycle stability and high capacity retention due to the robust LiF-rich SEI film induced by COFs. This COFs-based dual-functional separator promotes the practical application of lithium metal batteries.

6.
Nat Prod Res ; 37(11): 1797-1805, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36083622

RESUMO

A novel pectic polysaccharide, named GTPS3-1, was isolated and purified from Laoshan green tea polysaccharide (GTPS) through DEAE Sepharose Fast Flow and Sephacryl S-300 columns, its structure was characterized and its anti-inflammatory activity was explored. GTPS3-1, with a molecular weight of 26.05 kDa, was mainly composed of galacturonic acid, galactose, rhamnose and arabinose in a molar ratio of 4.72:2.5:1.68:1 on the basis of monosaccharide composition. Structural analysis results revealed that GTPS3-1 was a highly branched pectin consisting of →3)-Galp-(1→, →2)-Rhap-(1→, →3,5)-Araf-(1→, →3)-Rhap-(1→, GalpA-(1→, →3,4)-Galp-(1→, →4)-GalpA-(1→, →5)-Araf-(1→, →2,4)-Rhap-(1→, Rhap-(1→ and Araf-(1→ according to FT-IR, methylation and NMR analyses. In addition, GTPS3-1 inhibited the production of NO, TNF-α and IL-6 in a dose-dependent manner, which resulted in the amelioration of inflammatory injury in LPS-induced RAW 264.7 cells. These results would provide a theoretical basis for practical application of the novel polysaccharide as an anti-inflammatory adjuvant.


Assuntos
Pectinas , Fator de Necrose Tumoral alfa , Pectinas/farmacologia , Pectinas/química , Interleucina-6 , Espectroscopia de Infravermelho com Transformada de Fourier , Chá , Polissacarídeos/química
7.
ACS Appl Mater Interfaces ; 14(46): 52193-52203, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36368002

RESUMO

Dual-band electrochromic smart windows that can dynamically and independently control incident solar irradiation and visible light are envisioned as intelligent technology to reduce power consumption of buildings. However, there is still a great challenge to put the dual-band electrochromic technology into practice due to some limits in material systems and preparation techniques. Herein, a new electrochromic material of Li4Ti5O12 is developed to implement the dual-band optical modulation behavior, which could be further improved by a precise control of the lithium content in the active material. It could separately modulate the light and heat based on regulation of the transmittance of visible and near-infrared light. This enables Li4Ti5O12 to operate in three distinct modes of bright, cool, and dark, so as to meet various indoor needs. The optical transmittance contrast reaches over 60% at both visible- and near-infrared-light regions between different modes, and a large range of apparent temperature adjustments (7 °C) could be achieved. The prototype device based on dual-band electrochromic Li4Ti5O12 is further developed into a smart window of a house model, which exhibits good optical and thermal modulation behaviors in response to a high-temperature environment. This work provides a new material system for achieving dual-band electrochromic optical modulation toward smart energy-saving window applications.

8.
Materials (Basel) ; 15(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143756

RESUMO

Interfacial stress-strain fields become complicated in thermal barrier coatings (TBCs) under cyclic thermal loading, which affects the stability and spalling failure of TBCs directly. The convex and concave interfacial structures of TBCs were approximated as a multilayer cylinder model, and an analytical method of TBCs for shakedown analysis was established. A series of 8-YSZ TBC specimens were prepared by the plasma spraying process, followed by isothermal and thermal shock tests. The results showed that the stability limit is significantly greater than the elastic limit, the limit for the convex model was higher than that in the concave model, the first failure occurs in the concave area, and the main failure mode of a thermal barrier coating is the appearance of cracks at the interface layer during a thermal shock test. For the coating samples prepared in this study, the stability limits were between 950 °C and 1050 °C, and the validity of the stability limit analysis model of a multilayer structure was verified.

9.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144523

RESUMO

Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus Toona within the Meliaceae family. It has been confirmed to display a wide variety of biological activities. During our continuous search for active constituents from the seeds of T. sinensis, two new acyclic diterpenoids (1-2), together with five known limonoid-type triterpenoids (3-7), five known apotirucallane-type triterpenoids (8-12), and three known cycloartane-type triterpenoids (13-15), were isolated and characterized. Their structures were identified based on extensive spectroscopic experiments, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), and electronic circular dichroism (ECD), as well as the comparison with those reported in the literature. We compared these findings to those reported in the literature. Compounds 5, 8, and 13-14 were isolated from the genus Toona, and compounds 11 and 15 were obtained from T. sinensis for the first time. The antidiabetic nephropathy effects of isolated compounds against high glucose-induced oxidative stress and inflammation in rat glomerular mesangial cells (GMCs) were assessed in vitro. The results showed that new compounds 1 and 2 could significantly increase the levels of Nrf-2/HO-1 and reduce the levels of NF-κB, TNF-α, and IL-6 at concentrations of 30 µM. These results suggest that compounds 1 and 2 might prevent the occurrence and development of diabetic nephropathy (DN) and facilitate the research and development of new antioxidant and anti-inflammatory drugs suitable for the prevention and treatment of DN.


Assuntos
Nefropatias Diabéticas , Limoninas , Triterpenos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6/farmacologia , Limoninas/farmacologia , Limoninas/uso terapêutico , Células Mesangiais , NF-kappa B/farmacologia , Estresse Oxidativo , Ratos , Sementes , Terpenos/farmacologia , Terpenos/uso terapêutico , Toona , Triterpenos/química , Fator de Necrose Tumoral alfa/farmacologia
10.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407756

RESUMO

Synthetic diamond particle-reinforced copper-iron composites (SD/Cu-Fe) were produced by the powder metallurgical method for stone cutting applications, and the microstructure, density, compactness, hardness, flexure strength, and wear resistance of the composites were characterized in this work. The results showed that the diamond particles were relatively uniformly distributed in most areas of the copper matrix and the crystal shape of diamond particles were relatively intact in the sintering temperature range from 740 °C to 780 °C. The interfaces between the diamond particles and copper matrix, as well as the interfaces between the copper matrix and iron layer, were well bonded without significant gaps. The physical properties of composites increased first and then decreased with the sintering temperature. When the sintering temperature was 770 °C, the related properties reached the best. Diamond played a key role in improving the properties of the SD/Cu-Fe sandwich composite. This work provides a basis for the research and development of high-performance diamond-reinforced copper-based iron sandwich composites.

11.
J Food Biochem ; 46(5): e14085, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128681

RESUMO

SARS-CoV-2 wreaks havoc around the world, triggering the COVID-19 pandemic. It has been confirmed that the endoribonuclease NSP15 is crucial to the viral replication, and thus identified as a potential drug target against COVID-19. The NSP15 protein was used as the target to conduct high-throughput virtual screening on 30,926 natural products from the NPASS database to identify potential NSP15 inhibitors. And 100 ns molecular dynamics simulations were performed on the NSP15 and NSP15-NPC198199 system. In all, 10 natural products with high docking scores with NSP15 protein were obtained, among which compound NPC198199 scored the highest. The analysis of the binding mode between NPC198199 and NSP15 found that NPC198199 would form H-bond interactions with multiple key residues at the catalytic site. Subsequently, a series of post-dynamics simulation analyses (including RMSD, RMSF, PCA, DCCM, RIN, binding free energy, and H-bond occupancy) were performed to further explore inhibitory mechanism of compound NPC198199 on NSP15 protein at the molecular level. The research strongly indicates that the 10 natural compounds screened can be used as potential inhibitors of NSP15, and provides valuable information for the subsequent drug discovery of anti-SARS-CoV-2. PRACTICAL APPLICATIONS: Natural products play an important role in the treatment of many difficult diseases. In this study, high-throughput virtual screening technology was used to screen the natural product database to obtain potential inhibitors against endoribonuclease NSP15. The binding mechanism between natural products and NSP15 was investigated at the molecular level by molecular dynamics technology so that it is expected to become candidate drugs for the treatment of SARS-CoV-2. We hope that our research can provide new clue to combat COVID-19 and overcome the epidemic situation as soon as possible.


Assuntos
Antivirais , Produtos Biológicos , Endorribonucleases , SARS-CoV-2 , Proteínas não Estruturais Virais , Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Endorribonucleases/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
12.
Nat Prod Res ; 36(6): 1593-1598, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33624565

RESUMO

Toona sinensis is a medicinal and edible plant that belongs to the genus Toona of family Meliaceae. Phytochemical investigations carried out on this plant, seven apotirucallane-type triterpenoids (1-7), two cycloartane-type triterpenoids (8-9), four sterols (10-13), two sesquiterpenes (14-15), four phenols (16-19), and one lignin (20) were isolated from the pericarp of T. sinensis by silica gel column and preparative middle pressure liquid chromatography. Their structures were identified by interpretation of NMR and comparison with those reported in the literature. Compounds 11-12, 15-16, and 18 were isolated from the family Meliaceae, compounds 13-14 were obtained from the genus Toona, and compound 19 was obtained from T. sinensis for the first time. Additionally, the cytotoxicity and polyol pathway (PP) inhibitory activities of active constituents were evaluated in rat glomerular mesangial cells cultured under high glucose conditions, suggesting their potential application for a PP inhibitor.


Assuntos
Meliaceae , Toona , Animais , Meliaceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polímeros , Ratos
13.
ACS Appl Mater Interfaces ; 13(42): 50319-50328, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637271

RESUMO

Electrochromic devices (ECDs) exhibiting tunable optical and thermal modulation in the infrared (IR) region have attracted extensive attention in recent years due to their attractive application prospects in both military and civilian settings. However, considering the continuous energy supply needed for driving the device operation, it is desired to develop advanced IR-ECDs with low energy consumption. Herein, a flexible self-driven IR-ECD is constructed for achieving variable optical and thermal management in a low-energy mode. In this device, a built-in potential difference of 1.36 V exists between the EC polyaniline cathode and the aluminum foil anode. Consequently, there is a rapid and obvious increase in the IR reflectance of the device after connecting the two electrodes. Such a self-driven reflectance contrast is over 20% at the wavelength of 1500 nm, and the coloration efficiency of the device reaches up to 93.6 cm2 C-1. Meanwhile, the maximum apparent temperature modulation on the surface of the device reaches up to 5.6 °C. Then, the self-driven IR-ECD could recover to its original state driven by a solar cell, indicating good reversibility and stability. We anticipate that this work may provide a new insight into developing advanced self-driven IR-ECDs for applications in dynamic military camouflage and commercial thermal control.

14.
Nat Prod Res ; 35(23): 5513-5517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32657144

RESUMO

The polysaccharides were acquired from the seeds of T. sinensis by hot water extraction, ethanol precipitation, decoloration with macroporous 900 resin, and deproteinization with sevag reagent, which possessed significantly immunomodulatory activity on the levels of IgA, IgG, and IgM, the relative indices of thymus and spleen, and the phagocytosis index of mice in vivo. T. sinensis seeds polysaccharides (TSP) were separated and purified using DEAE-52 cellulose and Sephacryl S-300 column chromatography to obtain TSP-3a characterized of molecular weight, monosaccharides composition, and other preliminary structural features. TSP-3a (758.6 kDa) mainly contained Man, GalN, GlcA, Rha, Glc, Gal, Ara, and Fuc in a molar ratio of 0.26:0.24:0.19:1.80:0.45:12.56:1.09:0.21. FT-IR analysis suggested TSP-3a was an acid polysaccharide and the presence of ß configuration within the TSP-3a was discovered. Combining 1H NMR, 13C NMR, and comparison with those reported in the literature, the backbone of TSP-3a might contain →6)-α-D-Glc-(1→, →3)-ß-D-GlcA-(1→, →6)-α-D-Gal-(1→, α-D-Glc-(1→, and →6)-ß-D-Gal-(1→.[Figure: see text].


Assuntos
Polissacarídeos , Toona , Animais , Camundongos , Peso Molecular , Monossacarídeos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Int J Nanomedicine ; 15: 10371-10384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376326

RESUMO

PURPOSE: Many exopolysaccharides (EPS) have significant emulsifying activity. Some EPS produced by the marine bacterial strain FYS have stronger emulsifying activity in the form of nanoparticles, suggesting that they could potentially form Pickering emulsions. We prepared novel EPS/CT Pickering nanoemulsions (ECPN) with EPS as emulsifiers and assessed their ability to ameliorate the poor permeability of calcipotriol (CT) in skin affected by psoriasis vulgaris. METHODS: A strain of marine bacterium FYS was identified. Molecular weight, monosaccharide composition and microstructure of EPS were determined by gel permeation chromatography, high-performance liquid chromatography and scanning electron microscopy. EPS nanoparticles were prepared by adjusting the pH, and the emulsifying activity was studied at different pH. ECPN were prepared by ultrasound and optimized by the response surface method. The size distribution, microstructure, stability and in vitro drug release of ECPN were studied. The therapeutic effect of ECPN on psoriasis vulgaris was explored by animal experiments and characterizing histomorphology in vivo. RESULTS: A phylogenetic tree revealed that FYS was a Bacillus halodurans strain. EPS produced by the strain were heteropolysaccharides with a three-dimensional network composed of glucose, galactose, glucuronic acid, rhamnose, galacturonic acid and mannose (32.0:34.3:9.7:7.4:10.3:6.3). The EPS can form nanoparticles at pH = 4-6 with enhanced emulsifying ability. Transmission electron microscopy revealed that EPS nanoparticles adhered to the surface of oil droplets to stabilize the emulsions via a Pickering emulsification mechanism. The prepared ECPN have high stability with a sustained-release effect. Finally, animal experiments showed that ECPN effectively shortened the treatment course of psoriasis vulgaris. CONCLUSION: EPS is highly possible to have the potential Pickering emulsification mechanism. The stability of the nanoemulsion was high. ECPN also showed potential for use in the treatment of psoriasis vulgaris. This study provides new insight into the medical applications of EPS and the treatment of psoriasis.


Assuntos
Calcitriol/análogos & derivados , Emulsões/química , Polissacarídeos Bacterianos/química , Psoríase/tratamento farmacológico , Animais , Bacillus/química , Bacillus/genética , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Emulsificantes/química , Emulsões/administração & dosagem , Concentração de Íons de Hidrogênio , Camundongos , Peso Molecular , Nanopartículas/química , Filogenia , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/patologia
16.
Neurochem Res ; 45(9): 2052-2064, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556929

RESUMO

Polyphenols from Toona sinensis seeds (PTSS) have demonstrated anti-inflammatory effects in various diseases, while the anti-neuroinflammatory effects still remain to be investigated. We aimed to investigate the effects of PTSS on Parkinson's disease and underlying mechanisms using a rat model. We employed 6-hydroxydopamine (6-OHDA) to male Sprague Dawley (SD) rats and PC12 cells to construct the in vivo and vitro models of PD and dopaminergic (DA) neuron injury, respectively. Cell viability was detected by cell counting kit-8 (CCK-8) assay and protein levels of inflammatory mediators and some p38 MAPK pathway molecules were investigated by immunohistochemistry and Western blot analyses. The results showed that 6-OHDA significantly increased protein levels of inflammatory mediators, such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), which could be reversed by PTSS through suppressing the p38 MAPK pathway. The anti-inflammatory effects of PTSS were significantly enhanced by the specific p38 inhibitor of SB203580 in vitro. The present work suggests that PTSS can exert anti-inflammatory effects on PD models, which may be attributed to the suppression of p38 MAPK signaling pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson Secundária/tratamento farmacológico , Polifenóis/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Inflamação/induzido quimicamente , Masculino , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Células PC12 , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Sementes/química , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Toona/química , Fator de Necrose Tumoral alfa/metabolismo
17.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059523

RESUMO

Hyperglycemia is a strong risk factor for chronic complications of diabetes. Hyperglycemic conditions foster not only the production of reactive oxygen species (ROS), but also the consumption of antioxidants, leading to oxidative stress and promoting the occurrence and progression of complications. During our continuous search for antioxidant constituents from the pericarp of Toona sinensis (A. Juss.) Roem, we isolated two previously unreported apotirucallane-type triterpenoids, toonasinensin A (1) and toonasinensin B (2), together with five known apotirucallane-type triterpenoids (3-7) and two known cycloartane-type triterpenoids (8-9) from the pericarp. Compounds 8-9 were obtained from T. sinensis for the first time. Their structures were characterized based on interpretation of spectroscopic data (1D, 2D NMR, high-resolution electrospray ionization mass spectra, HR-ESI-MS) and comparison to previous reports. Compounds (2, 4, 6, 7, and 9) were able to inhibit proliferation against rat glomerular mesangial cells (GMCs) cultured under high-glucose conditions within a concentration of 80 µM. Compounds (2, 6, and 7) were tested for antioxidant activity attributable to superoxide dismutase (SOD), malondialdehyde (MDA), and ROS in vitro, and the results showed that compounds (2, 6, and 7) could significantly increase the levels of SOD and reduce the levels of MDA and ROS. The current studies showed that apotirucallane-type triterpenoids (2, 6, and 7) might have the antioxidant effects against diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Meliaceae/química , Triterpenos/farmacologia , Animais , Técnicas de Cultura de Células , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Glucose/toxicidade , Humanos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Triterpenos/química , Triterpenos/isolamento & purificação
18.
Molecules ; 23(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544561

RESUMO

Semen Allii Fistulosi (PSAF) is the seed of Allium fistulosum L. of the Liliaceae family. The purpose of this study was to extract, characterize, and evaluate the antioxidant activity in vitro of proteins. Using single factor and orthogonal design, the optimum conditions of extraction were determined to be as follows: extraction time 150 min, pH 8.5, temperature 60 °C, and ratio (v/w, mL/g) of extraction solvent to raw material 35. The isoelectric point of the pH was determined to be about 4.4 and 10.2, by measuring the protein content of PSAF solutions at different pH values. The amino acid composition of PSAF was determined by high performance liquid chromatography (HPLC), and the results suggested that the species of amino acids contained in the PSAF was complete. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS⁻PAGE) analysis showed the molecular weight was mainly between 40 and 55 kDa, and Fourier-transform infrared spectroscopy (FTIR) characterized prevalent protein absorption peaks. PSAF exhibited potent scavenging activities against DPPH assays, via targeting of hydroxyl and superoxide radicals, while chelating Fe2+ activity and demonstrating weak reducing power. This work revealed that PSAF possessed potential antioxidant activity in vitro, suggesting potential for use of PSAF as a natural antioxidant.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Liliaceae/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Sementes/química , Aminoácidos/análise , Sequestradores de Radicais Livres/química , Concentração de Íons de Hidrogênio , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo
19.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373106

RESUMO

Advanced glycation end products (AGEs) and the receptor for AGEs (RAGE) both play important roles in diabetic nephropathy (DN). Previous studies have identified glomerular mesangial cells (GMCs) injury as a key early risk factor in the development of DN. Kaempferitrin (KM) is a potent antioxidant with hypoglycemic action. Although KM is known to protect against AGE-induced damage in GMCs, the effects and the mechanisms by which they occur are poorly understood. In this study, cultured rat GMCs were exposed to AGE-induced oxidative stress (OS) to model DN in vitro. Reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescin diacetate (DCFH-DA). Superoxide dismutase (SOD) and malondialdehyde (MDA) were studied using commercial kits. Mitochondrial membrane potential (Δψm) was measured by rhodamine 123. Hoechst 33258 and annexin V and propidium iodide (PI) double staining were performed to observe the apoptosis states in GMCs, whereas apoptosis and protective mechanism in AGE-induced GMCs were investigated by Western blot. The data revealed that KM effectively increased SOD activity, decreased MDA levels, suppressed ROS generation, and protected against OS in AGE-induced GMCs. Treatment with KM also inhibited the expression of collagen IV and transforming growth factor-ß1 (TGF-ß1), improved mitochondrial membrane potential recovery, and suppressed the mitochondrial/cytochrome c-mediated apoptosis pathway through the expression of anti-apoptotic factors in GMCs in vitro. These findings suggest that KM may be a new potential agent in the treatment of DN in future.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Quempferóis/farmacologia , Células Mesangiais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Malondialdeído/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
20.
Mar Pollut Bull ; 108(1-2): 62-9, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27184127

RESUMO

Both the whole cells and protoplasts of Pseudomonas aeruginosa PAO1 and Bacillus cereus, two biofilm-forming bacteria, were disrupted by the lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA. The lipopeptide 6-2 could also effectively inhibit the formation of biofilms and disperse pre-formed biofilms. Live/dead staining of the biofilms grown in the absence or presence of the lipopeptide 6-2 showed that more dead bacterial cells in the presence of the lipopeptide than those in the absence of the lipopeptide and biofilm formation was greatly reduced by the lipopeptide 6-2. Expression of the PslC gene related to exopolysaccharides in P. aeruginosa PAO1 was also inhibited. All these results demonstrated that the lipopeptide 6-2 produced by B. amyloliquefaciens anti-CA had a high activity against biofilm-forming bacteria. The lipopeptide 6-2 also killed the larvae of Balanus amphitrite and inhibit the germination of Laminaria japonica spore and growth of protozoa, all of which were the fouling organisms in marine environments.


Assuntos
Bacillus amyloliquefaciens , Biofilmes , Lipopeptídeos , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...