Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38964285

RESUMO

INTRODUCTION: To investigate the autoinflammatory effect and biological behaviour of simvastatin (SIM) on adamantinomatous craniopharyngioma (ACP) cells. METHODS: Craniopharyngiomas imaging, intraoperative observations, and tumour histopathology were employed to investigate the correlation between esters and craniopharyngiomas. Filipin III fluorescent probe verified the validity of SIM on the alternations of synthesized cholesterol in craniopharyngioma cells. The cell counting kit-8 (CCK8) assay detected the impacts of SIM on cell proliferation and determined the IC50 value of tumour cells. Reverse transcription polymerase chain reaction (RT-PCR) measured the expression of inflammatory factors. Flow cytometry technique detected the cell cycle and apoptosis, and cell scratch assay judged the cell migration. Meanwhile, Western blot was adopted to determine the expression of proteins related to inflammation, proliferation, and apoptosis signalling pathways. RESULTS: In the ACP tumour parenchyma, many cholesterol crystalline clefts were observed, and the deposition of esters was closely associated with craniopharyngioma inflammation. After simvastatin intervention, a reduction in cholesterol synthesis within ACP was noted. RT-PCR analysis revealed SIM inhibited the transcription of inflammatory factors in ACP cells. Western blot analysis demonstrated SIM inhibited nuclear factor-kappa B (NF-κB) p65 activation expression while promoted the expressions of Cl-caspase-3 and P38 MAPK. CCK8 assay indicated a decrease in ACP cell activity upon SIM treatment. Scratch assay signified that SIM hindered ACP cell migration. Flow cytometry results suggested that the drug promoted ACP cell apoptosis. CONCLUSION: SIM suppressed the inflammatory response to craniopharyngiomas by inhibiting craniopharyngioma cholesterol synthesis, inhibited proliferation of ACP cells, and promoted their apoptosis.

2.
Materials (Basel) ; 17(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893858

RESUMO

To investigate the axial compressive behavior of reinforced concrete-filled square glass-fiber-reinforced polymer(GFRP) tubular (RCFSGT) columns, 17 specimens were designed with variations in GFRP tube wall thickness, spiral reinforcement yield strength, and spiral reinforcement ratio. A detailed model was developed using the finite element software ABAQUS, enabling in-depth mechanistic analysis and expanded parameter studies. The results indicate that the failure types of the specimens are all manifested as GFRP square tube cracking, and the core concrete is subjected to crushing or shear failure. The inclusion of a reinforcement cage can significantly enhance the load-bearing capacity and ductility of the specimen. Furthermore, as the yield strength and reinforcement ratio of the spiral reinforcement increase, so does the load-bearing capacity of the specimen. The finite element simulation results align well with the experimental findings. As the wall thickness of the GFRP square tube increases from 2 mm to 6 mm, the load-bearing capacity improves by approximately 19.69%. With the yield strength of the spiral reinforcement rising from 200 MPa to 400 MPa, the specimen's load-bearing capacity shows an increase of approximately 7.55%. However, as its yield strength continues to increase, there is minimal change in the load-bearing capacity. When the stirrup ratio of spiral reinforcement rises from 0.33% to 2.26%, the specimen's load-bearing capacity experiences an increase of approximately 56.90%.

3.
FASEB J ; 38(12): e23735, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860936

RESUMO

Identification of potential key targets of melanoma, a fatal skin malignancy, is critical to the development of new cancer therapies. Lysine methyltransferase 2A (KMT2A) promotes melanoma growth by activating the human telomerase reverse transcriptase (hTERT) signaling pathway; however, the exact mechanism remains elusive. This study aimed to reveal new molecular targets that regulate KMT2A expression and melanoma growth. Using biotin-streptavidin-agarose pull-down and proteomics, we identified Damage-specific DNA-binding protein 2 (DDB2) as a KMT2A promoter-binding protein in melanoma cells and validated its role as a regulator of KMT2A/hTERT signaling. DDB2 knockdown inhibited the expression of KMT2A and hTERT and inhibited the growth of melanoma cells in vitro. Conversely, overexpression of DDB2 activated the expression of KMT2A and promoted the growth of melanoma cells. Additionally, we demonstrated that DDB2 expression was higher in tumor tissues of patients with melanoma than in corresponding normal tissues and was positively correlated with KMT2A expression. Kaplan-Meier analysis showed a poor prognosis in patients with high levels of DDB2 and KMT2A. Overall, our data suggest that DDB2 promotes melanoma cell growth through the transcriptional regulation of KMT2A expression and predicts poor prognosis. Therefore, targeting DDB2 may regulate the effects of KMT2A on melanoma growth and progression, providing a new potential therapeutic strategy for melanoma.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Melanoma , Proteína de Leucina Linfoide-Mieloide , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Prognóstico , Linhagem Celular Tumoral , Feminino , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
4.
Neural Regen Res ; 19(10): 2249-2258, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488559

RESUMO

JOURNAL/nrgr/04.03/01300535-202410000-00026/figure1/v/2024-02-06T055622Z/r/image-tiff Previous studies have shown that growth hormone can regulate hypothalamic energy metabolism, stress, and hormone release. Therefore, growth hormone has great potential for treating hypothalamic injury. In this study, we established a specific hypothalamic axon injury model by inducing hypothalamic pituitary stalk electric lesions in male mice. We then treated mice by intraperitoneal administration of growth hormone. Our results showed that growth hormone increased the expression of insulin-like growth factor 1 and its receptors, and promoted the survival of hypothalamic neurons, axonal regeneration, and vascular reconstruction from the median eminence through the posterior pituitary. Altogether, this alleviated hypothalamic injury-caused central diabetes insipidus and anxiety. These results suggest that growth hormone can promote axonal reconstruction after hypothalamic injury by regulating the growth hormone-insulin-like growth factor 1 axis.

5.
Cell Death Dis ; 14(12): 837, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104106

RESUMO

Cervical cancer (CC) seriously affects women's health. Therefore, elucidation of the exact mechanisms and identification of novel therapeutic targets are urgently needed. In this study, we identified FAM83F, which was highly expressed in CC cells and tissues, as a potential target. Our clinical data revealed that FAM83F protein expression was markedly elevated in CC tissues and was positively correlated with poor prognosis. Moreover, we observed that FAM83F knockdown significantly inhibited cell proliferation, induced apoptosis, and suppressed glycolysis in CC cells, while its overexpression displayed opposite effects. Mechanistically, FAM83F regulated CC cell growth and glycolysis by the modulation of Wnt/ß-catenin pathway. The enhancing effects of FAM83F overexpression on CC cell proliferation and glycolysis could be impaired by the Wnt/ß-catenin inhibitor XAV939. Moreover, we found that c-Myc bound to the FAM83F promoter and activated the transcription of FAM83F. Notably, knockdown of FAM83F impaired the enhancement of cell proliferation and glycolysis induced by ectopic c-Myc. Consistent with in vitro findings, results from a xenograft mouse model confirmed the promoting role of FAM83F. In summary, our study demonstrated that FAM83F promoted CC growth and glycolysis through regulating the Wnt/ß-catenin pathway, suggesting that FAM83F may be a potential molecular target for CC treatment. Schematic summary of c-Myc-activated FAM83F transcription to promote cervical cancer growth and glycolysis by targeting the Wnt/ß-catenin signal pathway.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Regulação para Cima/genética , Linhagem Celular Tumoral , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Proliferação de Células/genética , Glicólise/genética , Regulação Neoplásica da Expressão Gênica
6.
J Cancer Res Clin Oncol ; 149(20): 18093-18102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994984

RESUMO

PURPOSE: Cervical cancer is the fourth most common cancer in women and poses a major threat to women's health, urgently requiring new treatment methods. METHODS: This study first successfully extracted and identified small extracellular vesicles secreted by human umbilical cord-derived mesenchymal stem cells. We studied the effects of MSC-sEV on the squamous differentiation levels of cervical cancer CaSki cells in vitro, and explored the effects of MSC-sEV on the NOTCH pathway, the growth, proliferation, migration abilities and squamous differentiation levels of cervical cancer cells. The roles of MSC-sEV were also verified in human keratinocyte HaCaT cells. RESULTS: The results showed that Jagged1 protein on MSC-sEV can bind to NOTCH1 on cervical cancer cells, activate NOTCH signaling, and promote squamous differentiation levels in CaSki cells, thus inhibiting the growth, proliferation and migration abilities of CaSki cells. MSC-sEV can also activate the NOTCH pathway in HaCaT cells, but promote the viability of HaCaT cells. CONCLUSION: MSC-sEV can activate the NOTCH pathway to promote squamous differentiation of CaSki cells and inhibit the growth proliferation and migration abilities of CaSki cells which may be a new mechanism for cervical cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/patologia , Vesículas Extracelulares/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteína Jagged-1/farmacologia , Transdução de Sinais , Neoplasias do Colo do Útero/patologia
7.
Pituitary ; 26(2): 197-208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36862266

RESUMO

PURPOSE: The histopathological study of brain tissue is a common method in neuroscience. However, efficient procedures to preserve the intact hypothalamic-pituitary brain specimens are not available in mice for histopathological study. METHOD: We describe a detailed procedure for obtaining mouse brain with pituitary-hypothalamus continuity. Unlike the traditional methods, we collect the brain via a ventral approach. We cut the intraoccipital synchondrosis, transection the endocranium of pituitary, broke the spheno-occipital synchondrosis, expose the posterior edge of pituitary, separate the trigeminal nerve, then the intact pituitary gland was preserved. RESULT: We report an more effective and practical method to obtain continuous hypothalamus -pituitary preparations based on the preserve of leptomeninges. COMPARED WITH THE EXISTING METHODS: Our procedure effectively protects the integrity of the fragile infundibulum preventing the pituitary from separating from the hypothalamus. This procedure is more convenient and efficient. CONCLUSION: We present a convenient and practical procedure to obtain intact hypothalamic-pituitary brain specimens for subsequent histopathological evaluation in mice.


Assuntos
Doenças da Hipófise , Neuro-Hipófise , Camundongos , Animais , Hipófise/patologia , Neuro-Hipófise/patologia , Hipotálamo/patologia , Sistema Hipotálamo-Hipofisário , Doenças da Hipófise/cirurgia , Doenças da Hipófise/patologia
8.
Front Physiol ; 14: 1131701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875046

RESUMO

Background: With an increasing number of patients experiencing infertility due to chronic salpingitis after Chlamydia trachomatis (CT) infection, there is an unmet need for tissue repair or regeneration therapies. Treatment with human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EV) provides an attractive cell-free therapeutic approach. Methods: In this study, we investigated the alleviating effect of hucMSC-EV on tubal inflammatory infertility caused by CT using in vivo animal experiments. Furthermore, we examined the effect of hucMSC-EV on inducing macrophage polarization to explore the molecular mechanism. Results: Our results showed that tubal inflammatory infertility caused by Chlamydia infection was significantly alleviated in the hucMSC-EV treatment group compared with the control group. Further mechanistic experiments showed that the application of hucMSC-EV induced macrophage polarization from the M1 to the M2 type via the NF-κB signaling pathway, improved the local inflammatory microenvironment of fallopian tubes and inhibited tube inflammation. Conclusion: We conclude that this approach represents a promising cell-free avenue to ameliorate infertility due to chronic salpingitis.

9.
Phytomedicine ; 112: 154679, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791628

RESUMO

BACKGROUND: Although macrophage-mediated low-grade chronic inflammation and liver dysfunction have been found to be associated with the development of non-alcoholic fatty (NAFLD) and widely reported, but strategies and drugs targeting macrophages for the treatment of NAFLD are limited. HYPOTHESIS/PURPOSE: Garlic-derived exosomes (GDE) can be useful for NAFLD due to its anti-inflammatory activity. Clarify whether GDE improves liver dysfunction through macrophage-hepatocyte crosstalk. METHODS: GDE was isolated with PEG precipitation and ultracentrifuge. Inflammatory cytokines were detected by qRT-PCR and ELISA. Expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) was determined using qRT-PCR and western blot. Crosstalk between macrophages and hepatocytes was identified through a co-culture experiment. Small RNA sequencing and bioinformatic analysis were used to identify the key element of GDE regulating the expression of PFKFB3 gene. RESULTS: GDE regulated the expression of PFKFB3 to reduce the inflammatory response in LPS-treated differentiated THP-1 macrophages. Data from small RNA sequencing and bioinformatics analysis reveal that miR-396e, one of the most abundant miRNAs of GDE, is the key component to regulate PFKFB3 expression. Mechanistically, miR-396e-mediating PFKFB3 expression plays a crucial role in GDE inhibiting inflammatory response and enhancing lipid metabolism in hepatocytes via the macrophage-hepatocyte crosstalk. Notably, GDE supplementation reduced the inflammatory response and improved liver dysfunction in high-fat diet-fed mice. CONCLUSION: GDE may be useful for improving the symptoms of NAFLD via macrophage-hepatocyte crosstalk and its role in PFKFB3 expression.


Assuntos
Exossomos , Alho , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta Hiperlipídica , Exossomos/metabolismo , Hepatócitos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
Clin Epigenetics ; 15(1): 14, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707882

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is not sensitive to immunotherapy and has poor prognosis. DNA methylation regulates gene expression, and its abnormal changes are related to many human diseases. Recently, DNA methylation has been found to participate in immune infiltration in various cancers. However, its pattern in RCC remains poorly understood. RESULTS: We found that IL18 was significantly over-expressed in RCC tumor tissues compared to normal adjacent tissues The IL18 promoter region was hypomethylated, which was strongly correlated with elevated IL18 mRNA expression, and predicted advanced clinicopathological characteristics and shorter overall survival. Furthermore, we found that IL18 promoter methylation was significantly related to the down-regulation of immune checkpoint molecules and increase of CD8 + T cell infiltration in RCC tumor tissues. CONCLUSIONS: We have identified the important role of IL18 promoter methylation and expression, which are associated with clinicopathological characteristics, overall survival, immune cell infiltration and expression of immune checkpoint molecules in RCC. We present the rationale for IL18 promoter methylation as a molecular biomarker for predicting the response of RCC to immune checkpoint inhibitors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Prognóstico , Neoplasias Renais/patologia , Interleucina-18/genética , Metilação de DNA , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Regiões Promotoras Genéticas , Regulação Neoplásica da Expressão Gênica
11.
J Nutr Biochem ; 113: 109249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496060

RESUMO

Low-grade chronic inflammation originating from the adipose tissue and imbalance of lipid metabolism in the liver are the main drivers of the development of obesity and its related metabolic disorders. In this work, we found that garlic-derived exosomes (GDE) supplementation improved insulin resistance, altered the levels of inflammatory cytokines in serum and epididymal white adipose tissue (eWAT) by decreasing the accumulation of macrophages in HFD-fed mice. Meanwhile, we also observed that GDE regulated the expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), one of the critical glycolytic enzymes, to shape the metabolic reprograming of macrophage induced by lipopolysaccharide (LPS) and mitigate the inflammatory response in adipocytes via macrophage-adipocyte cross-talk. Data from small RNA sequencing, bioinformatical analysis and the gene over-expression revealed that miR-396e, one of the most abundant miRNAs of GDE, played a critical role in promoting the metabolic reprogramming of macrophage by directly targeting PFKFB3. The findings of this study not only provide an in-depth understanding of GDE protecting against inflammation in obesity but supply evidence to study the molecular mechanisms associated with the interspecies communication.


Assuntos
Exossomos , Alho , Resistência à Insulina , MicroRNAs , Camundongos , Animais , Exossomos/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
12.
Front Bioeng Biotechnol ; 10: 815614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350179

RESUMO

Energy metabolism is important for cell growth and tolerance against environment stress. In acetic acid fermentation by Acetobacter pasteurianus, the correlation coefficients of acid production rate with energy charge and ATP content were 0.9981 and 0.9826, respectively. The main energy metabolism pathway, including glycolysis pathway, TCA cycle, ethanol oxidation, pentose phosphate pathway, and ATP production, was constructed by transcriptome analysis. The effects of fermentation conditions, including dissolved oxygen, initial acetic acid concentration, and total concentration, on acetic acid fermentation and energy metabolism of A. pasteurianus were analyzed by using the RT-PCR method. The results showed the high energy charge inhibited glucose catabolism, and associated with the high ethanol oxidation rate. Consequently, a virtuous circle of increased ethanol oxidation, increased energy generation, and acetic acid tolerance was important for improving acetic acid fermentation.

13.
Neuroendocrinology ; 112(9): 917-926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34915523

RESUMO

INTRODUCTION: Insulin-like growth factor type 1 receptor (IGF1R) is overexpressed in various malignant tumors, which relates to their transformation and recurrence. Craniopharyngioma is a benign tumor with malignant results, often accompanied by a severe inflammatory reaction. However, the relationship between IGF1R expression and the inflammatory response of craniopharyngioma is unclear. METHODS: We enrolled 85 patients with adamantinomatous craniopharyngioma (ACP) in a study to explore the relationship between IGF1R expression and clinical features of this disease. RESULTS: Patients in the IGF1R high-expression group had a significantly higher incidence of hypopituitarism, higher recurrence rate, and lower progression-free survival. ß-Catenin can further regulate expression of the stem cell marker, CD44, by regulating IGF1R. Using immunofluorescence, we found that tumor stem cell-like cells did not express phosphorylated (p)-ERK, although p-ERK activation was evident in the surrounding cells. Picropodophyllin, a specific inhibitor of IGF1R, increased the expression of p-ERK protein and decreased the transcription level of interleukin-6. CONCLUSIONS: High expression of IGF1R might promote inflammation of ACP, which might be an unfavorable factor for pituitary function and prognosis. The high expression of IGF1R in tumor stem cell-like cells might inhibit the expression of p-ERK and promote the generation of inflammatory factors. IGF1R plays a stemness maintenance role in ACP and regulates the production of inflammatory factors through a p-ERK pathway, which suggests that targeting IGF1R and p-ERK might provide a new direction for alleviating tumor inflammation.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Receptor IGF Tipo 1 , Craniofaringioma/patologia , Humanos , Inflamação/metabolismo , Hipófise/metabolismo , Neoplasias Hipofisárias/patologia , Receptor IGF Tipo 1/metabolismo
14.
Neural Netw ; 144: 540-552, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34627119

RESUMO

In human conversations, the emergence of new topics is a key factor in enabling dialogues to last longer. Additional information brought by new topics can make the conversation more diverse and interesting. Chat-bots also need to be equipped with this ability to proactively elicit new chatting topics. However, previous studies have neglected the elicitation of new topics in open-domain conversations. At the same time, previous works have represented topics with word-level keywords or entities. However, a topic is open to multiple keywords and a keyword can reflect multiple potential topics. To move towards a fine-grained topic representation, we represent topic with topically related words. In this paper, we design a novel model, named CMTE, which focuses not only on coherence with context, but also brings up new chatting topics. In order to extract topic information from conversational utterances, a Topic Fetcher module is designed to fetch semantic-coherent topics with the help of topic model. To equip model with the ability to elicit new topics, a Topic Manager module is designed to associate the new topic with context. Finally, responses are generated by a well-designed fusion decoding mechanism to explicitly distinguish between topic words and general words. Experiment results show that our model is better than state of the art in automatic metrics and manual evaluations.


Assuntos
Comunicação , Semântica , Humanos
15.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3643-3649, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402288

RESUMO

Type 2 diabetes mellitus( T2 DM) is a common chronic metabolic disease characterized by persistent hyperglycemia and insulin resistance. In pancreatic ß-cells,glucose-stimulated insulin secretion( GSIS) plays a pivotal role in maintaining the balance of blood glucose level. Previous studies have shown that geniposide,one of the active components of Gardenia jasminoides,could quickly regulate the absorption and metabolism of glucose,and affect glucose-stimulated insulin secretion in pancreatic ß cells,but the specific mechanism needs to be further explored. Emerging evidence indicated that glycosylation of glucose transporter( GLUT) has played a key role in sensing cell microenvironmental changes and regulating glucose homeostasis in eucaryotic cells. In this study,we studied the effects of geniposide on the key molecules of GLUT2 glycosylation in pancreatic ß cells. The results showed that geniposide could significantly up-regulate the mRNA and protein levels of Glc NAc T-Ⅳa glycosyltransferase( Gn T-Ⅳa) and galectin-9 but had no signi-ficant effect on the expression of clathrin,and geniposide could distinctively regulate the protein level of Gn T-Ⅳa in a short time( 1 h) under the conditions of low and medium glucose concentrations,but had no significant effect on the protein level of galectin-9. In addition,geniposide could also remarkably affect the protein level of glycosylated GLUT2 in a short-time treatment. The above results suggested that geniposide could quickly regulate the protein level of Gn T-Ⅳa,a key molecule of protein glycosylation in INS-1 rat pancreatic ßcells and affect the glycosylation of GLUT2. These findings suggested that the regulation of geniposide on glucose absorption,metabolism and glucose-stimulated insulin secretion might be associated with its efficacy in regulating GLUT2 glycosylation and affecting its distribution on the cell membrane and cytoplasm in pancreatic ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glicosilação , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Iridoides , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...