Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Oncol Rep ; 50(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203394

RESUMO

Forkhead box D1 (FOXD1) serves a critical role in colorectal cancer (CRC). FOXD1 expression is an independent prognostic factor in patients with CRC; however, the molecular mechanism and signaling pathway of FOXD1 that regulates cell stemness and chemoresistance has not been fully characterized. The aim of the present study was to further validate the effect of FOXD1 on the proliferation and migration of CRC cells, and to delve into the possible potential of FOXD1 in the clinical treatment of CRC. The effect of FOXD1 on cell proliferation was assessed using Cell Counting Kit 8 (CCK­8) and colony formation assays. The effect of FOXD1 on cell migration was assessed by wound­healing and Transwell assays. The effect of FOXD1 on cell stemness was assessed by spheroid formation in vitro and limiting dilution assays in vivo. The expression of stemness associated proteins, leucine rich repeat containing G protein­coupled receptor 5 (LGR5), OCT4, Sox2 and Nanog, and epithelial­mesenchymal transition associated proteins, E­cadherin, N­cadherin and vimentin, were detected by western blotting. Proteins interrelationships were assessed by a co­immunoprecipitation assay. Oxaliplatin resistance was assessed using CCK­8 and apoptosis assays in vitro, and using a tumor xenograft model in vivo. By constructing FOXD1 overexpression and knockdown stably transfected strains of colon cancer cells, it was revealed that the overexpression of FOXD1 increased CRC cell stemness and chemoresistance. By contrast, knockdown of FOXD1 produced the opposite effects. These phenomena were caused by the direct interaction between FOXD1 and ß­catenin, thus promoting its nuclear translocation and the activation of downstream target genes, such as LGR5 and Sox2. Notably, inhibition of this pathway with a specific ß­catenin inhibitor (XAV­939) could impair the effects induced by the overexpression of FOXD1. In summary, these results indicated that FOXD1 may promote cell stemness and the chemoresistance of CRC by binding directly to ß­catenin and enhancing ß­catenin nuclear localization; therefore, it may be considered a potential clinical target.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição Forkhead , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Oxaliplatina/farmacologia , Transdução de Sinais , Via de Sinalização Wnt/genética
2.
J Neurosci ; 43(8): 1387-1404, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36693757

RESUMO

Developing spinal circuits generate patterned motor outputs while many neurons with high membrane resistances are still maturing. In the spinal cord of hatchling frog tadpoles of unknown sex, we found that the firing reliability in swimming of inhibitory interneurons with commissural and ipsilateral ascending axons was negatively correlated with their cellular membrane resistance. Further analyses showed that neurons with higher resistances had outward rectifying properties, low firing thresholds, and little delay in firing evoked by current injections. Input synaptic currents these neurons received during swimming, either compound, unitary current amplitudes, or unitary synaptic current numbers, were scaled with their membrane resistances, but their own synaptic outputs were correlated with membrane resistances of their postsynaptic partners. Analyses of neuronal dendritic and axonal lengths and their activities in swimming and cellular input resistances did not reveal a clear correlation pattern. Incorporating these electrical and synaptic properties into a computer swimming model produced robust swimming rhythms, whereas randomizing input synaptic strengths led to the breakdown of swimming rhythms, coupled with less synchronized spiking in the inhibitory interneurons. We conclude that the recruitment of these developing interneurons in swimming can be predicted by cellular input resistances, but the order is opposite to the motor-strength-based recruitment scheme depicted by Henneman's size principle. This form of recruitment/integration order in development before the emergence of refined motor control is progressive potentially with neuronal acquisition of mature electrical and synaptic properties, among which the scaling of input synaptic strengths with cellular input resistance plays a critical role.SIGNIFICANCE STATEMENT The mechanisms on how interneurons are recruited to participate in circuit function in developing neuronal systems are rarely investigated. In 2-d-old frog tadpole spinal cord, we found the recruitment of inhibitory interneurons in swimming is inversely correlated with cellular input resistances, opposite to the motor-strength-based recruitment order depicted by Henneman's size principle. Further analyses showed the amplitude of synaptic inputs that neurons received during swimming was inversely correlated with cellular input resistances. Randomizing/reversing the relation between input synaptic strengths and membrane resistances in modeling broke down swimming rhythms. Therefore, the recruitment or integration of these interneurons is conditional on the acquisition of several electrical and synaptic properties including the scaling of input synaptic strengths with cellular input resistances.


Assuntos
Interneurônios , Natação , Animais , Natação/fisiologia , Xenopus laevis/fisiologia , Larva/fisiologia , Reprodutibilidade dos Testes , Interneurônios/fisiologia , Medula Espinal/fisiologia
3.
Neural Regen Res ; 17(6): 1334-1342, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34782579

RESUMO

Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury. The subacute phase after spinal cord injury is critical to the recovery of neurological function, which involves tissue bridging and axon regeneration. In this study, we found that zebrafish spontaneously recovered 44% of their swimming ability within the subacute phase (2 weeks) after spinal cord injury. During this period, we identified 7762 differentially expressed genes in spinal cord tissue: 2950 were up-regulated and 4812 were down-regulated. These differentially expressed genes were primarily concentrated in the biological processes of the respiratory chain, axon regeneration, and cell-component morphogenesis. The genes were also mostly involved in the regulation of metabolic pathways, the cell cycle, and gene-regulation pathways. We verified the gene expression of two differentially expressed genes, clasp2 up-regulation and h1m down-regulation, in zebrafish spinal cord tissue in vitro. Pathway enrichment analysis revealed that up-regulated clasp2 functions similarly to microtubule-associated protein, which is responsible for axon extension regulated by microtubules. Down-regulated h1m controls endogenous stem cell differentiation after spinal cord injury. This study provides new candidate genes, clasp2 and h1m, as potential therapeutic intervention targets for spinal cord injury repair by neuroregeneration. All experimental procedures and protocols were approved by the Animal Ethics Committee of Tianjin Institute of Medical & Pharmaceutical Sciences (approval No. IMPS-EAEP-Q-2019-02) on September 24, 2019.

4.
J Neurophysiol ; 126(5): 1814-1830, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705593

RESUMO

Xenopus laevis has a lateral line mechanosensory system throughout its full life cycle, and a previous study on prefeeding stage tadpoles revealed that it may play a role in motor responses to both water suction and water jets. Here, we investigated the physiology of the anterior lateral line system in newly hatched tadpoles and the motor outputs induced by its activation in response to brief suction stimuli. High-speed videoing showed tadpoles tended to turn and swim away when strong suction was applied close to the head. The lateral line neuromasts were revealed by using DASPEI staining, and their inactivation with neomycin eliminated tadpole motor responses to suction. In immobilized preparations, suction or electrically stimulating the anterior lateral line nerve reliably initiated swimming but the motor nerve discharges implicating turning was observed only occasionally. The same stimulation applied during ongoing fictive swimming produced a halting response. The anterior lateral line nerve showed spontaneous afferent discharges at rest and increased activity during stimulation. Efferent activities were only recorded during tadpole fictive swimming and were largely synchronous with the ipsilateral motor nerve discharges. Finally, calcium imaging identified neurons with fluorescence increase time-locked with suction stimulation in the hindbrain and midbrain. A cluster of neurons at the entry point of the anterior lateral line nerve in the dorsolateral hindbrain had the shortest latency in their responses, supporting their potential sensory interneuron identity. Future studies need to reveal how the lateral line sensory information is processed by the central circuit to determine tadpole motor behavior.NEW & NOTEWORTHY We studied Xenopus tadpole motor responses to anterior lateral line stimulation using high-speed videos, electrophysiology and calcium imaging. Activating the lateral line reliably started swimming. At high stimulation intensities, turning was observed behaviorally but suitable motor nerve discharges were seen only occasionally in immobilized tadpoles. Suction applied during swimming produced a halting response. We analyzed afferent and efferent activities of the tadpole anterior lateral line nerve and located sensory interneurons using calcium imaging.


Assuntos
Larva/fisiologia , Sistema da Linha Lateral/fisiologia , Atividade Motora/fisiologia , Rombencéfalo/fisiologia , Animais , Comportamento Animal/fisiologia , Interneurônios/fisiologia , Larva/crescimento & desenvolvimento , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Xenopus laevis
5.
World J Gastrointest Surg ; 13(3): 267-278, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33796215

RESUMO

BACKGROUND: Neoadjuvant therapy (NAT) is becoming increasingly important in locally advanced rectal cancer. Hence, such research has become a problem. AIM: To evaluate the downstaging effect of NAT, its impact on postoperative complications and its prognosis with different medical regimens. METHODS: Seventy-seven cases from Shanghai Ruijin Hospital affiliated with Shanghai Jiaotong University School of Medicine were retrospectively collected and divided into the neoadjuvant radiochemotherapy (NRCT) group and the neoadjuvant chemotherapy (NCT) group. The differences between the two groups in tumor regression, postoperative complications, rectal function, disease-free survival, and overall survival were compared using the χ 2 test and Kaplan-Meier analysis. RESULTS: Baseline data showed no statistical differences between the two groups, whereas the NRCT group had a higher rate of T4 (30/55 vs 5/22, P < 0.05) than the NCT groups. Twelve cases were evaluated as complete responders, and 15 cases were evaluated as tumor regression grade 0. Except for the reduction rate of T stage (NRCT 37/55 vs NCT 9/22, P < 0.05), there was no difference in effectiveness between the two groups. Preoperative radiation was not a risk factor for poor reaction or anastomotic leakage. No significant difference in postoperative complications and disease-free survival between the two groups was observed, although the NRCT group might have better long-term overall survival. CONCLUSION: NAT can cause tumor downstaging preoperatively or even complete remission of the primary tumor. Radiochemotherapy could lead to better T downstaging and promising overall survival without more complications.

6.
Cold Spring Harb Protoc ; 2021(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33536289

RESUMO

Xenopus laevis tadpoles have been an excellent, simple vertebrate model for studying the basic organization and physiology of the spinal cord and motor centers in the brainstem. In the past, intracellular recordings from the spinal and brainstem neurons were primarily made using sharp electrodes, although whole-cell patch-clamp technology has been around since the early 1980s. In this protocol, I describe the dissections and procedures needed for in situ whole-cell patch-clamp recording, which has become routine in tadpole neurophysiology since the early 2000s. The critical step in the dissections is to delicately remove some ependymal cells lining the tadpole neurocoele in order to expose clean neuronal somata without severing axon tracts. Whole-cell recordings can then be made from the somata in either current- or voltage-clamp mode.


Assuntos
Neurônios , Medula Espinal , Animais , Larva/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Medula Espinal/fisiologia , Xenopus laevis/fisiologia
7.
Front Cell Neurosci ; 13: 47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873004

RESUMO

Vertebrate central pattern generators (CPGs) controlling locomotion contain neurons which provide the excitation that drives and maintains network rhythms. In a simple vertebrate, the developing Xenopus tadpole, we study the role of excitatory descending neurons with ipsilateral projecting axons (descending interneurons, dINs) in the control of swimming rhythms. In tadpoles with both intact central nervous system (CNS) and transections in the hindbrain, exciting some individual dINs in the caudal hindbrain region could start swimming repeatedly. Analyses indicated the recruitment of additional dINs immediately after such evoked dIN spiking and prior to swimming. Excitation of dINs can therefore be sufficient for the initiation of swimming. These "powerful" dINs all possessed both ascending and descending axons. However, their axon projection lengths were not different from those of other excitatory dINs at similar locations. The dorsoventral position of dINs, as a population, significantly better matched that of cells marked by immunocytochemistry for the transcription factor CHX10 than other known neuron types in the ventral hindbrain and spinal cord. The comparison suggests that the excitatory interneurons including dINs are CHX10-positive, in agreement with CHX10 as a marker for excitatory neurons with ipsilateral projections in the spinal cord and brainstem of other vertebrates. Overall, our results further demonstrate the key importance of dINs in driving tadpole swimming rhythms.

8.
Proc Biol Sci ; 286(1899): 20190297, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30900536

RESUMO

All animals use sensory systems to monitor external events and have to decide whether to move. Response times are long and variable compared to reflexes, and fast escape movements. The complexity of adult vertebrate brains makes it difficult to trace the neuronal circuits underlying basic decisions to move. To simplify the problem, we investigate the nervous system and responses of hatchling frog tadpoles which swim when their skin is stimulated. Studying the neuron-by-neuron pathway from sensory to hindbrain neurons, where the decision to swim is made, has revealed two simple pathways generating excitation which sums to threshold in these neurons to initiate swimming. The direct pathway leads to short, and reliable delays like an escape response. The other includes a population of sensory processing neurons which extend firing to introduce noise and delay into responses. These neurons provide a brief, sensory memory of the stimulus, that allows tadpoles to integrate stimuli occurring within a second or so of each other. We relate these findings to other studies and conclude that sensory memory makes a fundamental contribution to simple decisions and is present in the brainstem of a basic vertebrate at a surprisingly early stage in development.


Assuntos
Memória/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tempo de Reação , Xenopus laevis/fisiologia , Animais , Larva/fisiologia , Xenopus laevis/crescimento & desenvolvimento
9.
J Physiol ; 596(24): 6219-6233, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30074236

RESUMO

KEY POINTS: Short-term working memory and decision-making are usually studied in the cerebral cortex; in many models of simple decision making, sensory signals build slowly and noisily to threshold to initiate a motor response after long, variable delays. When touched, hatchling frog tadpoles decide whether to swim; we define the long and variable delays to swimming and use whole-cell recordings to uncover the neurons and processes responsible. Firing in sensory and sensory pathway neurons is short latency, and too brief and invariant to explain these delays, while recordings from hindbrain reticulospinal neurons controlling swimming reveal a prolonged and variable build-up of synaptic excitation which can reach firing threshold and initiate swimming. We propose this excitation provides a sensory memory of the stimulus and may be generated by small reverberatory hindbrain networks. Our results uncover fundamental network mechanisms that allow animals to remember brief sensory stimuli and delay simple motor decisions. ABSTRACT: Many motor responses to sensory input, like locomotion or eye movements, are much slower than reflexes. Can simpler animals provide fundamental answers about the cellular mechanisms for motor decisions? Can we observe the 'accumulation' of excitation to threshold proposed to underlie decision making elsewhere? We explore how somatosensory touch stimulation leads to the decision to swim in hatchling Xenopus tadpoles. Delays measured to swimming in behaving and immobilised tadpoles are long and variable. Activity in their extensively studied sensory and sensory pathway neurons is too short-lived to explain these response delays. Instead, whole-cell recordings from the hindbrain reticulospinal neurons that drive swimming show that these receive prolonged, variable synaptic excitation lasting for nearly a second following a brief stimulus. They fire and initiate swimming when this excitation reaches threshold. Analysis of the summation of excitation requires us to propose extended firing in currently undefined presynaptic hindbrain neurons. Simple models show that a small excitatory recurrent-network inserted in the sensory pathway can mimic this process. We suggest that such a network may generate slow, variable summation of excitation to threshold. This excitation provides a simple memory of the sensory stimulus. It allows temporal and spatial integration of sensory inputs and explains the long, variable delays to swimming. The process resembles the 'accumulation' of excitation proposed for cortical circuits in mammals. We conclude that fundamental elements of sensory memory and decision making are present in the brainstem at a surprisingly early stage in development.


Assuntos
Memória/fisiologia , Tato/fisiologia , Xenopus laevis/fisiologia , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Larva/fisiologia , Modelos Biológicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Tempo de Reação , Natação/fisiologia , Gravação em Vídeo
10.
J Math Neurosci ; 8(1): 10, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022326

RESUMO

We present the study of a minimal microcircuit controlling locomotion in two-day-old Xenopus tadpoles. During swimming, neurons in the spinal central pattern generator (CPG) generate anti-phase oscillations between left and right half-centres. Experimental recordings show that the same CPG neurons can also generate transient bouts of long-lasting in-phase oscillations between left-right centres. These synchronous episodes are rarely recorded and have no identified behavioural purpose. However, metamorphosing tadpoles require both anti-phase and in-phase oscillations for swimming locomotion. Previous models have shown the ability to generate biologically realistic patterns of synchrony and swimming oscillations in tadpoles, but a mathematical description of how these oscillations appear is still missing. We define a simplified model that incorporates the key operating principles of tadpole locomotion. The model generates the various outputs seen in experimental recordings, including swimming and synchrony. To study the model, we perform detailed one- and two-parameter bifurcation analysis. This reveals the critical boundaries that separate different dynamical regimes and demonstrates the existence of parameter regions of bi-stable swimming and synchrony. We show that swimming is stable in a significantly larger range of parameters, and can be initiated more robustly, than synchrony. Our results can explain the appearance of long-lasting synchrony bouts seen in experiments at the start of a swimming episode.

11.
Brain Res Bull ; 139: 278-284, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29601952

RESUMO

Muscarinic acetylcholine receptors (mAChRs) mediate effects of acetylcholine (ACh) in many systems, including those involved in spinal functions like locomotion. In Xenopus laevis tadpoles at two days old, a model vertebrate for motor control research, we investigated the role of mAChRs in the skin mechanosensory pathway. We found that mAChR activation by carbachol did not affect the sensory Rohon-Beard neuron properties. However, carbachol could hyperpolarise sensory interneurons and decrease their voltage responses to outward currents. Carbachol could increase the threshold for the mechanosensory pathway to start swimming, preventing the initiation of swimming at higher concentrations altogether. Recording from the sensory interneurons in carbachol showed that their spiking after skin stimulation was depressed. However, the general muscarinic antagonist atropine did not have a clear effect on the swimming threshold or the modulation of sensory interneuron membrane conductance. Our results suggest the skin mechanosensory pathway may be subject to muscarinic modulation in this simple vertebrate system.


Assuntos
Agonistas Colinérgicos/farmacologia , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Atropina/farmacologia , Biotina/análogos & derivados , Biotina/metabolismo , Carbacol/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Larva , Antagonistas Muscarínicos/farmacologia , Técnicas de Patch-Clamp , Medula Espinal/citologia , Natação/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Xenopus laevis/anatomia & histologia
12.
Sci Rep ; 7: 46909, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29269940

RESUMO

This corrects the article DOI: 10.1038/srep16188.

13.
Biosystems ; 161: 3-14, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28720508

RESUMO

We present a detailed computational model of interacting neuronal populations that mimic the hatchling Xenopus tadpole nervous system. The model includes four sensory pathways, integrators of sensory information, and a central pattern generator (CPG) network. Sensory pathways of different modalities receive inputs from an "environment"; these inputs are then processed and integrated to select the most appropriate locomotor action. The CPG populations execute the selected action, generating output in motor neuron populations. Thus, the model describes a detailed and biologically plausible chain of information processing from external signals to sensors, sensory pathways, integration and decision-making, action selection and execution and finally, generation of appropriate motor activity and behaviour. We show how the model produces appropriate behaviours in response to a selected scenario, which consists of a sequence of "environmental" signals. These behaviours might be relatively complex due to noisy sensory pathways and the possibility of spontaneous actions.


Assuntos
Comportamento Animal , Tomada de Decisões , Larva/fisiologia , Locomoção , Neurônios Motores/fisiologia , Rede Nervosa , Natação/fisiologia , Animais , Modelos Neurológicos , Inibição Neural , Xenopus
14.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462392

RESUMO

Most vertebrates show concussion responses when their heads are hit suddenly by heavy objects. Previous studies have focused on the direct physical injuries to the neural tissue caused by the concussive blow. We study a similar behavior in a simple vertebrate, the Xenopus laevis tadpole. We find that concussion-like behavior can be reliably induced by the mechanosensory stimulation of the head skin without direct physical impacts on the brain. Head skin stimulation activates a cholinergic pathway which then opens G protein-coupled inward-rectifying potassium channels (GIRKs) via postsynaptic M2 muscarinic receptors to inhibit brainstem neurons critical for the initiation and maintenance of swimming for up to minutes and can explain many features commonly observed immediately after concussion. We propose that some acute symptoms of concussion in vertebrates can be explained by the opening of GIRKs following mechanosensory stimulation to the head.


Assuntos
Acetilcolina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Neurônios/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Concussão Encefálica/metabolismo , Tronco Encefálico/metabolismo , Humanos , Oócitos/metabolismo , Vertebrados/metabolismo , Xenopus laevis/metabolismo
15.
J Neurophysiol ; 118(1): 121-130, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331009

RESUMO

Persistent sodium currents (INaP) are common in neuronal circuitries and have been implicated in several diseases, such as amyotrophic lateral sclerosis (ALS) and epilepsy. However, the role of INaP in the regulation of specific behaviors is still poorly understood. In this study we have characterized INaP and investigated its role in the swimming and struggling behavior of Xenopus tadpoles. INaP was identified in three groups of neurons, namely, sensory Rohon-Beard neurons (RB neurons), descending interneurons (dINs), and non-dINs (neurons rhythmically active in swimming). All groups of neurons expressed INaP, but the currents differed in decay time constants, amplitudes, and the membrane potential at which INaP peaked. Low concentrations (1 µM) of the INaP blocker riluzole blocked INaP ~30% and decreased the excitability of the three neuron groups without affecting spike amplitudes or cellular input resistances. Riluzole reduced the number of rebound spikes in dINs and depressed repetitive firing in RB neurons and non-dINs. At the behavior level, riluzole at 1 µM shortened fictive swimming episodes. It also reduced the number of action potentials neurons fired on each struggling cycle. The results show that INaP may play important modulatory roles in motor behaviors.NEW & NOTEWORTHY We have characterized persistent sodium currents in three groups of spinal neurons and their role in shaping spiking activity in the Xenopus tadpole. We then attempted to evaluate the role of persistent sodium currents in regulating tadpole swimming and struggling motor outputs by using low concentrations of the persistent sodium current antagonist riluzole.


Assuntos
Potenciais de Ação , Atividade Motora , Sódio/metabolismo , Animais , Feminino , Larva/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Xenopus laevis
16.
Sci Rep ; 5: 16188, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541477

RESUMO

Activity-dependent modification of neural network output usually results from changes in neurotransmitter release and/or membrane conductance. In Xenopus frog tadpoles, spinal locomotor network output is adapted by an ultraslow afterhyperpolarization (usAHP) mediated by an increase in Na(+) pump current. Here we systematically explore how the interval between two swimming episodes affects the second episode, which is shorter and slower than the first episode. We find the firing reliability of spinal rhythmic neurons to be lower in the second episode, except for excitatory descending interneurons (dINs). The sodium/proton antiporter, monensin, which potentiates Na(+) pump function, induced similar effects to short inter-swim intervals. A usAHP induced by supra-threshold pulses reduced neuronal firing reliability during swimming. It also increased the threshold current for spiking and introduced a delay to the first spike in a train, without reducing subsequent firing frequency. This delay was abolished by ouabain or zero K(+) saline, which eliminate the usAHP. We present evidence for an A-type K(+) current in spinal CPG neurons which is inactivated by depolarization and de-inactivated by hyperpolarization, and accounts for the prolonged delay. We conclude that the usAHP attenuates neuronal responses to excitatory network inputs by both membrane hyperpolarization and enhanced de-inactivation of an A-current.


Assuntos
Locomoção/fisiologia , Rede Nervosa/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Periodicidade , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Natação/fisiologia , Transmissão Sináptica/fisiologia , Xenopus laevis/metabolismo , Xenopus laevis/fisiologia
17.
J Neurosci ; 35(27): 9799-810, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26156983

RESUMO

Many neural circuits show fast reconfiguration following altered sensory or modulatory inputs to generate stereotyped outputs. In the motor circuit of Xenopus tadpoles, I study how certain voltage-dependent ionic currents affect firing thresholds and contribute to circuit reconfiguration to generate two distinct motor patterns, swimming and struggling. Firing thresholds of excitatory interneurons [i.e., descending interneurons (dINs)] in the swimming central pattern generator are raised by depolarization due to the inactivation of Na(+) currents. In contrast, the thresholds of other types of neurons active in swimming or struggling are raised by hyperpolarization from the activation of fast transient K(+) currents. The firing thresholds are then compared with the excitatory synaptic drives, which are revealed by blocking action potentials intracellularly using QX314 during swimming and struggling. During swimming, transient K(+) currents lower neuronal excitability and gate out neurons with weak excitation, whereas their inactivation by strong excitation in other neurons increases excitability and enables fast synaptic potentials to drive reliable firing. During struggling, continuous sensory inputs lead to high levels of network excitation. This allows the inactivation of Na(+) currents and suppression of dIN activity while inactivating transient K(+) currents, recruiting neurons that are not active in swimming. Therefore, differential expression of these currents between neuron types can explain why synaptic strength does not predict firing reliability/intensity during swimming and struggling. These data show that intrinsic properties can override fast synaptic potentials, mediate circuit reconfiguration, and contribute to motor-pattern switching.


Assuntos
Geradores de Padrão Central/fisiologia , Locomoção/fisiologia , Inibição Neural/fisiologia , Periodicidade , Filtro Sensorial/efeitos dos fármacos , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anestésicos Locais/farmacologia , Animais , Ataxinas , Geradores de Padrão Central/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Gonadotropinas/farmacologia , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/farmacologia , Inibição Neural/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Natação/fisiologia , Xenopus
18.
J Neurosci ; 34(17): 6065-77, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760866

RESUMO

Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left-right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony.


Assuntos
Potenciais de Ação/fisiologia , Geradores de Padrão Central/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Animais , Interneurônios/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Natação/fisiologia , Xenopus
19.
J Undergrad Neurosci Educ ; 12(2): A107-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24693257

RESUMO

Neuroscience labs benefit from reliable, easily-monitored neural responses mediated by well-studied neural pathways. Xenopus laevis tadpoles have been used as a simple vertebrate model preparation in motor control studies. Most of the neuronal pathways underlying different aspects of tadpole swimming behavior have been revealed. These include the skin mechanosensory touch and pineal eye light-sensing pathways whose activation can initiate swimming, and the cement gland pressure-sensing pathway responsible for stopping swimming. A simple transection in the hindbrain can cut off the pineal eye and cement gland pathways from the swimming circuit in the spinal cord, resulting in losses of corresponding functions. Additionally, some pharmacological experiments targeting neurotransmission can be designed to affect swimming and, fluorescence-conjugated α-bungarotoxin can be used to label nicotinic receptors at neuromuscular junctions. These experiments can be readily adapted for undergraduate neuroscience teaching labs. Possible expansions of some experiments for more sophisticated pharmacological or neurophysiological labs are also discussed.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-269508

RESUMO

<p><b>OBJECTIVE</b>To investigate the protective effects of insulin-like growth factor-1 (IGF-1) on the nerve cells of neonatal rats under oxidative stress.</p><p><b>METHODS</b>Primary cortical neurons, oligodendrocytes, and astrocytes from newborn rats were cultured. An oxidative stress model was established with different concentrations of H2O2 (0-60 μmol/L); the degree of damage of nerve cells was evaluated by lactate dehydrogenase assay, and the viability of nerve cells was tested by MTT assay. An oxidative stress model was established with different concentration of H2O2 (0-80 μmol/L). Expression of Akt/p-Akt (Ser473) in neurons was measured by Western blot before and after IGF-1 (25 ng/mL) administration.</p><p><b>RESULTS</b>Compared with those not treated with H2O2, the cortical neurons, oligodendrocytes, and astrocytes treated with different concentrations of H2O2 for 24 hours showed increased damage and decreased cell viability; compared with oligodendrocytes and astrocytes, neurons showed significantly more changes (P<0.01). Compared with those not treated with H2O2, the cortical neurons treated with different concentrations of H2O2 for 5 minutes showed a significant decrease in p-Akt (Ser473) level (P<0.01), which was dependent on the concentration of H2O2. For the neurons treated with low-concentration H2O2, the addition of IGF-1 could reverse the inhibition of Akt phosphorylation, eliminating the difference in p-Akt level compared with the neurons not treated with H2O2, (P>0.05); however, it had no significant effect on the inhibition of Akt phosphorylation by high-concentration H2O2, and the treated neurons still had a lower p-Akt level than untreated neurons (P<0.01 for all). For the cortical neurons that had been treated with different concentration of H2O2 for 1 hour, the addition of IGF-1 (25 ng/mL) could eliminate thedifference in p-Akt level between the treated neurons and untreated neurons (P>0.05).</p><p><b>CONCLUSIONS</b>Cortical neurons are more sensitive to oxidative stress induced by H2O2 than other nerve cells. IGF-1 has protective effects on cortical nerve cells under oxidative stress.</p>


Assuntos
Animais , Ratos , Animais Recém-Nascidos , Córtex Cerebral , Biologia Celular , Peróxido de Hidrogênio , Farmacologia , Fator de Crescimento Insulin-Like I , Farmacologia , Neurônios , Metabolismo , Estresse Oxidativo , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Metabolismo , Espécies Reativas de Oxigênio , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...