Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Front Microbiol ; 15: 1447755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268535

RESUMO

This study utilized high-throughput sequencing to investigate endophytic bacteria diversity in halophytic plants Anabasis truncate (AT) and Anabasis eriopoda (AE) from the Aral Sea region. Following sequence processing, 356 Amplicon Sequence Variants (ASVs) were discovered. The abundance and variety of endophytic bacteria were higher in AT. Bacillota, Pseudomonadota, Actinomycetota, and Bacteroidota constituted the dominant in AE, whereas Pseudomonadota, Actinomycetota, Bacteroidota, and Chloroflexota constituted the dominant in AT. Biomarkers were identified through LEFSe analysis, showing host-specific patterns. PCoA indicated distinct bacterial community structures. Phylogenetic analysis revealed diverse endophytic bacteria, including potential novel taxa. PICRUSt2 predicted diverse functions for endophytic bacteria in halophytes, indicating recruitment of beneficial bacterial taxa to adapt to extreme hypersaline conditions, including plant growth-promoting, biocontrol, and halophilic/tolerant bacteria. Moreover, the evolutionary relationship, metabolic capabilities, and plant beneficial potentials of the Bacillus swezeyi strains, previously isolated from the above two halophytes, were analyzed using comparative genomic and physiological analysis. The B. swezeyi strains displayed versatile environmental adaptability, as shown by their ability to use a wide range of carbon sources and their salt tolerances. B. swezeyi possessed a wide range of enzymatic capabilities, including but not limited to proteases, cellulases, and chitinases. Comparative genomic analysis revealed that despite some variations, they shared genetic similarities and metabolic capabilities among the B. swezeyi strains. B. swezeyi strains also displayed outstanding plant-growth-promoting and antagonistic potentials, offering potential solutions to the global food crisis. This study enhances our understanding of microbial diversity in halophytes on saline-alkali land in the West Aral Sea, shedding light on the halophyte microbiome and its collaboration with hosts in highly hypersaline environments. This study also provides a scientific basis for developing high-quality microbial fertilizers and implementing sustainable agricultural practices.

2.
Antonie Van Leeuwenhoek ; 118(1): 4, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269642

RESUMO

A Gram-stain-negative, aerobic, motile and rod-shaped bacterium, the color of the bacterial colony ranges from light yellow to yellow, designated YC-2023-2T, was isolated from sediment sample of Yuncheng salt lake. Growth occurred at 15-45℃ (optimum 37℃), pH 6.0-9.0 (optimum pH 7.0-8.0) and with 0-8.0% NaCl (w/v, optimum 2.0%). The phylogenetic analysis based on 16S rRNA gene sequences showed that strain YC-2023-2T belonged to the family Kordiimonadaceae. The closely related members were Gimibacter soli 6D33T (92.38%), Kordiimonas lipolytica M41T (91.88%), Eilatimonas milleporae DSM 25217T (91.88%) and Kordiimonas gwangyangensis JCM 12864T (91.84%). The genome of strain YC-2023-2T was 2957513 bp, and the genomic DNA G+C content was 63.91%. The main respiratory quinone was Q-10 and the major fatty acids (>10%) were iso-C15:0, C16:0, C19:0 cyclo ω8c, Summed Feature 8 (C18:1 ω6c or C18:1 ω7c) and Summed Feature 9 (iso-C17:1 ω9c or C16:0 10-methyl). The major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, unidentified glycolipid, unidentified lipid, and two unidentified aminolipids. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain YC-2023-2T is proposed to represent a novel species of a novel genus named Yunchengibacter salinarum gen. nov., sp. nov., within the family Kordiimonadaceae. The type strain is YC-2023-2T (= GDMCC 1.4502T = KCTC 8546T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Lagos , Filogenia , RNA Ribossômico 16S , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Técnicas de Tipagem Bacteriana , China , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
3.
Front Microbiol ; 15: 1439798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282566

RESUMO

In recent years, there has been an increasing focus on microbial ecology and its possible impact on agricultural production, owing to its eco-friendly nature and sustainable use. The current study employs metabolomics technologies and bioinformatics approaches to identify changes in the exometabolome of Streptomyces albidoflavus B24. This research aims to shed light on the mechanisms and metabolites responsible for the antifungal and growth promotion strategies, with potential applications in sustainable agriculture. Metabolomic analysis was conducted using Q Exactive UPLC-MS/MS. Our findings indicate that a total of 3,840 metabolites were identified, with 137 metabolites exhibiting significant differences divided into 61 up and 75 downregulated metabolites based on VIP >1, |FC| >1, and p < 0.01. The interaction of S. albidoflavus B24 monoculture with the co-culture demonstrated a stronger correlation coefficient. The Principal Component Analysis (PCA) demonstrates that PCA1 accounted for 23.36%, while PCA2 accounted for 20.28% distinction. OPLS-DA score plots indicate significant separation among different groups representing (t1) 24% as the predicted component (to1) depicts 14% as the orthogonal component. According to the findings of this comprehensive study, crude extracts from S. albidoflavus demonstrated varying abilities to impede phytopathogen growth and enhance root and shoot length in tested plants. Through untargeted metabolomics, we discovered numerous potential molecules with antagonistic activity against fungal phytopathogens among the top 10 significant metabolites with the highest absolute log2FC values. These include Tetrangulol, 4-Hydroxybenzaldehyde, and Cyclohexane. Additionally, we identified plant growth-regulating metabolites such as N-Succinyl-L-glutamate, Nicotinic acid, L-Aspartate, and Indole-3-acetamide. The KEGG pathway analysis has highlighted these compounds as potential sources of antimicrobial properties. The inhibitory effect of S. albidoflavus crude extracts on pathogen growth is primarily attributed to the presence of specific gene clusters responsible for producing cyclic peptides such as ansamycins, porphyrin, alkaloid derivatives, and neomycin. Overall, it is apparent that crude extracts from S. albidoflavus exhibited varying abilities to inhibit the growth of three phytopathogens and enhancement in both root and shoot length of tested plants. This research enhances our understanding of how secondary metabolites contribute to growth promotion and biocontrol, supporting ecosystem sustainability and resilience while boosting productivity in sustainable agriculture.

4.
Antonie Van Leeuwenhoek ; 117(1): 111, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103503

RESUMO

The strain designated NCCP-602T was isolated from tannery effluent, and displayed aerobic, gram-positive, rod-shaped cells that were characterized by oxidase negative, catalase positive, and non-motile features. The most favourable growth conditions were observed at a temperature of 30°C, pH 7.0, and NaCl concentration of 1% (w/v). It tolerated heavy metals at high concentrations of chromium (3600 ppm), copper (3300 ppm), cadmium (3000 ppm), arsenic (1200 ppm) and lead (1500 ppm). The results of phylogenetic analysis, derived from sequences of the 16S rRNA gene, indicated the position of strain NCCP-602T within genus Brevibacterium and showed that it was closely related to Brevibacterium ammoniilyticum JCM 17537T. Strain NCCP-602 T formed a robust branch that was clearly separate from closely related taxa. A comparison of 16S rRNA gene sequence similarity and dDDH values between the closely related type strains and strain NCCP-602T provided additional evidence supporting the classification of strain NCCP-602T as a distinct novel genospecies. The polar lipid profile included diphosphatidylglycerol, glycolipid, phospholipids and amino lipids. MK-7 and MK-8 were found as the respiratory quinones, while anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C17:0, and anteiso-C17:0 were identified as the predominant cellular fatty acids (> 10%). Considering the convergence of phylogenetic, phenotypic, chemotaxonomic, and genotypic traits, it is suggested that strain NCCP-602 T be classified as a distinct species Brevibacterium metallidurans sp. nov. within genus Brevibacterium with type strain NCCP-602T (JCM 18882T = CGMCC1.62055T).


Assuntos
Brevibacterium , Ácidos Graxos , Metais Pesados , Filogenia , RNA Ribossômico 16S , Brevibacterium/genética , Brevibacterium/classificação , Brevibacterium/isolamento & purificação , Brevibacterium/metabolismo , Brevibacterium/fisiologia , RNA Ribossômico 16S/genética , Metais Pesados/metabolismo , Paquistão , Ácidos Graxos/análise , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise de Sequência de DNA , Fosfolipídeos/análise , Curtume , Genômica
5.
J Environ Manage ; 368: 122201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142107

RESUMO

In the current era of environmental disasters and the necessity of sustainable development, bacterial endophytes have gotten attention for their role in improving agricultural productivity and ecological sustainability. This review explores the multifaceted contributions of bacterial endophytes to plant health and ecosystem sustainability. Bacterial endophytes are invaluable sources of bioactive compounds, promising breakthroughs in medicine and biotechnology. They also serve as natural biocontrol agents, reducing the need for synthetic fertilizers and fostering environmentally friendly agricultural practices. It provides eco-friendly solutions that align with the necessity of sustainability since they can improve pest management, increase crop resilience, and facilitate agricultural production. This review also underscores bacterial endophytes' contribution to promoting sustainable and green industrial productions. It also presented how incorporating these microorganisms into diverse industrial sectors can harmonize humankind with ecological stability. The potential of bacterial endophytes has been largely untapped, presenting an opportunity for pioneering advancements in sustainable industrial applications. Their importance caught attention as they provided innovative solutions to the challenging problems of the new era. This review sheds light on the remarkable potential of bacterial endophytes in various industrial sectors. Further research is imperative to discover their multifaceted potential. It will be essential to delve deeper into their mechanisms, broaden their uses, and examine their long-term impacts.


Assuntos
Agricultura , Endófitos , Ecossistema , Bactérias
6.
Curr Microbiol ; 81(10): 313, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160426

RESUMO

Strain SYSU D00308T, a short-rod-shaped bacterium, was isolated from a sandy soil collected from the Gurbantunggut Desert, Xinjiang, PR China. Strain SYSU D00308T was Gram-stain-negative, aerobic, pink-pigmented, non-motile, catalase- and oxidase-positive. The strain grew at 4-37 ℃, pH 5.0-8.0 and 0-1.5% (w/v) NaCl. 16S rRNA gene sequencing analyses demonstrated that strain SYSU D00308T belonged to the genus Rufibacter and exhibited the highest sequence similarity (97.4%) to Rufibacter glacialis MDT1-10-3T. Summed features 3, 4, and iso-C15:0 were the major fatty acids, and menaquinone 7 (MK-7) was the sole respiratory menaquinone. The polar lipid profiles comprised phosphatidylethanolamine, an unidentified glycolipid, an unidentified phospholipid, two unidentified aminophospholipids, and two unidentified lipids. The genome size and DNA G + C content of strain SYSU D00308T were 5,176,683 bp and 54.8%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00308T and members of the genus Rufibacter were 77.7-81.8% and 20.4-23.4% respectively, which were less than the corresponding thresholds (ANI: 95-96%; dDDH: 70%) for prokaryotic species definition. According to the genotypic, phenotypic and phylogenetic characteristics, strain SYSU D00308T represents a novel species of the genus Rufibacter. We propose the name, Rufibacter psychrotolerans sp. nov., with SYSU D00308T (= CGMCC 1.18621T = KCTC 82275T = MCCC 1K04970T) as the type strain.


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Ácidos Graxos/química , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Clima Desértico , Temperatura Baixa , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-39207838

RESUMO

We aimed to elucidate the relationship between Kineococcus terrestris and Kineococcus aureolus through whole-genome-based analysis. The genome-derived 16S rRNA gene sequences of K. terrestris KCTC 39738T and K. aureolus KCTC 39739T shared a 100% similarity. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences revealed that K. terrestris KCTC 39738T and K. aureolus KCTC 39739T formed a robust clade, indicating a close relationship between them. Genomic comparison showed that the two strains shared 99.1% average nucleotide identity, 92.0% digital DNA-DNA hybridization and 98.9% average amino acid identity values, all of which exceeded the recommended threshold values for species classification. Most phenotypic characteristics between the two species were almost identical. Based on the above evidence, we propose the reclassification of Kineococcus aureolus Xu et al. 2017 as a later heterotypic synonym of Kineococcus terrestris Xu et al. 2017. Since these two species were proposed in the same article, the principle of priority does not apply. Our proposal is supported by the fact that the nomenclatural authorities first described Kineococcus terrestris.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Genoma Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Sequenciamento Completo do Genoma
9.
Antonie Van Leeuwenhoek ; 117(1): 98, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981868

RESUMO

An aerobic, Gram-stain-negative bacterium, designated as SYSU D00382T, was sourced from soil of Gurbantunggut Desert, PR China. The strain was short-rod-shaped, oxidase-positive and catalase-negative, with yellow-colored, convex, round, and smooth colonies on TSA plate. Growth and proliferation occurred at 4-37 °C (optimal: 28-30 °C), pH 5.0-8.0 (optimal: pH 6.0-7.0) and NaCl concentration of 0-2.5% (optimal: 0-0.5%). The 16S rRNA gene based phylogenetic assessment showed that SYSU D00382T belonged to the genus Pedobacter, and was most closely related to Pedobacter ginsengisoli Gsoil 104T with similarity of 97.7%. The genomic DNA G+C content of SYSU D00382T was 46.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00382T and P. ginsengisoli Gsoil 104T were 75.7% and 17.5%, respectively. The main polar lipid was phosphatidylethanolamine. The major fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, summed features 3 and 9. The sole respiratory quinone identified was MK-7. The phylogeny based on 16S rRNA gene and whole-genome sequences revealed that SYSU D00382T formed a robust lineage with P. ginsengisoli Gsoil 104T. Based on phenotypic, phylogenetic and genotypic data, a novel specie named Pedobacter deserti sp. nov. is proposed. The type strain is SYSU D00382T (= CGMCC 1.18627T = MCCC 1K04972T = KCTC 82279T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Pedobacter , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , Pedobacter/fisiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
10.
Antonie Van Leeuwenhoek ; 117(1): 101, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008162

RESUMO

Two novel Gram-stain-negative, aerobic, and non-motile strains, designated FZY0004T and YYF002T, were isolated from an agar-degrading co-culture, which was obtained from seawater of the intertidal zone of Yancheng City, the Yellow Sea of China. Strain FZY0004T optimally grew at 28 °C, pH 7.0, and 2-6% NaCl, while strain YYF002T optimally grew at 28 °C, pH 7.5, and 2-4% NaCl. Strain FZY0004T possessed Q-9 as the major respiratory quinone, and its major fatty acids (> 10%) were summed feature 8 (C18:1 ω7c), C16:0, and summed feature 3 (C16:1 ω7c/C16:1 ω6c). The polar lipids identified in strain FZY0004T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and several unidentified phospholipids (PL) and lipids (L). On the other hand, strain YYF002T had MK-6 as the predominant respiratory quinone and its major fatty acids consisted of iso-C15:0, iso-C15:1 G, and iso-C15:0 3-OH. The polar lipids identified in strain YYF002T were aminolipid (AL), PE, and several unidentified lipids. Strain FZY0004T shared 99.5% 16S rRNA gene sequence similarity and 90.1% average nucleotide identity (ANI) with T. povalilytica Zumi 95T, and strain YYF002T shared 99.2% 16S rRNA gene sequence similarity and 88.2% ANI with W. poriferorum JCM 12885T. The genomic DNA G + C contents of strains FZY0004T and YYF002T were 54.5% and 33.5%, respectively. The phylogenetic, phenotypic, and physiological characteristics permitted the distinction of the two strains from their neighbors, and we thus propose the names Thalassospira aquimaris sp. nov. (type strain FZY0004T = JCM 35895T = MCCC 1K08380T) and Winogradskyella marincola sp. nov. (type strain YYF002T = JCM 35950T = MCCC 1K08382T).


Assuntos
Ágar , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Água do Mar , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , DNA Bacteriano/genética , Ágar/metabolismo , Ácidos Graxos/metabolismo , Composição de Bases , Técnicas de Tipagem Bacteriana , China , Fosfolipídeos/metabolismo , Técnicas de Cocultura , Análise de Sequência de DNA
11.
PhytoKeys ; 243: 105-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947550

RESUMO

Lappulaeffusa D.H.Liu & W.J.Li, a new species of Boraginaceae from Xinjiang, China, is described and illustrated in this study. The new species is morphologically similar to Lappulahimalayensis and L.tadshikorum. However, it can be distinguished from the compared species by several characteristics, such as: stem single, erect, frequently branched at middle and above, densely spreading hispid, hairs discoid at base; corolla white or blue; fruit compressed, heteromorphic nutlets with two rows of marginal glochids, nutlets acute ovoid, disc narrowly ovate-triangular. The diagnosis of the new species is supported with comprehensive investigation including photographs, detailed description, notes on etymology, distribution and habitat, conservation status, as well as comparisons with morphologically similar species.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39041928

RESUMO

Two strains, designated as SYSU M80004T and SYSU M80005T, were isolated from water sampled in the Pearl River Estuary, Guangzhou, Guangdong, PR China. The strains were Gram-stain-negative and aerobic. Strain SYSU M80004T could grow at pH 6.0-8.0 (optimum, pH 7.0), 22-30 °C (optimum, 28 °C) and in the presence of 0-1 % NaCl (w/v; optimum 0 %). Strain SYSU M80005T could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C) and in the presence of 0-1 % NaCl (w/v; optimum 0%). Both strains contained MK-6 as the predominant menaquinone. C16 : 0 and iso-C15 : 0 were identified as the major fatty acids (>10 %) of strain SYSU M80004T while strain SYSU M80005T contained iso-C15 : 0 and iso-C17 : 0 3-OH as major fatty acids. Phosphatidylethanolamine was present as the major polar lipid in both strains. The average nucleotide identity and digital DNA-DNA hybridization values between these two strains and their closest relatives were 73.5-79.3 % and 19.6-23.2 %, respectively. Phylogenetic analysis based on the 16S rRNA gene and genomic sequences indicated they belonged to the genus Flavobacterium. Therefore, on the basis of phenotypic, physiological, chemotaxonomic and genomic evidence, two novel species, Flavobacterium adhaerens sp. nov. (type strain=SYSU M80004T=CDMCC 1.4522T=KCTC 102268T) and Flavobacterium maritimum sp. nov. (type strain=SYSU M80005T=CGMCC 1.4523T= KCTC 102269T) are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Estuários , Ácidos Graxos , Flavobacterium , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S , Rios , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Flavobacterium/classificação , China , RNA Ribossômico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Rios/microbiologia , Microbiologia da Água
13.
Antonie Van Leeuwenhoek ; 117(1): 103, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042225

RESUMO

Genus Thermus is the main focus of researcher among the thermophiles. Members of this genus are the inhabitants of both natural and artificial thermal environments. We performed phylogenomic analyses and comparative genomic studies to unravel the genomic diversity among the strains belonging to the genus Thermus in geographically different thermal springs. Sixteen Thermus strains were isolated and sequenced from hot springs, Qucai hot springs in Tibet and Tengchong hot springs in Yunnan, China. 16S rRNA gene based phylogeny and phylogenomic analyses based on concatenated set of 971 Orthologous Protein Families (supermatrix and gene content methods) revealed a mixed distribution of the Thermus strains. Whole genome based phylogenetic analysis showed, all 16 Thermus strains belong to five species; Thermus oshimai (YIM QC-2-109, YIM 1640, YIM 1627, 77359, 77923, 77838), Thermus antranikianii (YIM 73052, 77412, 77311, 71206), Thermus brokianus (YIM 73518, 71318, 72351), Thermus hydrothermalis (YIM 730264 and 77927) and one potential novel species 77420 forming clade with Thermus thalpophilus SYSU G00506T. Although the genomes of different strains of Thermus of same species were highly similar in their metabolic pathways, but subtle differences were found. CRISPR loci were detected through genome-wide screening, which showed that Thermus isolates from two different thermal locations had well developed defense system against viruses and adopt similar strategy for survival. Additionally, comparative genome analysis screened competence loci across all the Thermus genomes which could be helpful to acquire DNA from environment. In the present study it was found that Thermus isolates use two mechanism of incomplete denitrification pathway, some Thermus strains produces nitric oxide while others nitrious oxide (dinitrogen oxide), which show the heterotrophic lifestyle of Thermus genus. All isolated organisms encoded complete pathways for glycolysis, tricarboxylic acid and pentose phosphate. Calvin Benson Bassham cycle genes were identified in genomes of T. oshimai and T. antranikianii strains, while genomes of all T. brokianus strains and organism 77420 were lacking. Arsenic, cadmium and cobalt-zinc-cadmium resistant genes were detected in genomes of all sequenced Thermus strains. Strains 77,420, 77,311, 73,518, 77,412 and 72,351 genomes were found harboring genes for siderophores production. Sox gene clusters were identified in all sequenced genomes, except strain YIM 730264, suggesting a mode of chemolithotrophy. Through the comparative genomic analysis, we also identified 77420 as the genome type species and its validity as novel organism was confirmed by whole genome sequences comparison. Although isolate 77420 had 99.0% 16S rRNA gene sequence similarity with T. thalpophilus SYSU G00506T but based on ANI 95.86% (Jspecies) and digital DDH 68.80% (GGDC) values differentiate it as a potential novel species. Similarly, in the phylogenomic tree, the novel isolate 77,420 forming a separate branch with their closest reference type strain T. thalpophilus SYSU G00506T.


Assuntos
Genoma Bacteriano , Genômica , Fontes Termais , Filogenia , RNA Ribossômico 16S , Thermus , Thermus/genética , Thermus/classificação , Thermus/isolamento & purificação , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Tibet , China , DNA Bacteriano/genética , Análise de Sequência de DNA
14.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951577

RESUMO

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Assuntos
Química Click , Camundongos Endogâmicos C57BL , Rickettsia , Animais , Rickettsia/genética , Rickettsia/fisiologia , Camundongos , Química Click/métodos , Estômago/microbiologia , Modelos Animais de Doenças , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Feminino , Infecções por Rickettsia/microbiologia , Azidas/química
15.
Microbiome ; 12(1): 123, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971798

RESUMO

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Assuntos
Carbono , Campos de Petróleo e Gás , Filogenia , Carbono/metabolismo , Campos de Petróleo e Gás/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Alcanos/metabolismo
16.
Natl Sci Rev ; 11(7): nwae168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39071100

RESUMO

Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.

17.
ISME J ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073917

RESUMO

Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes (MAGs) from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.

18.
Antonie Van Leeuwenhoek ; 117(1): 108, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080041

RESUMO

A novel rod-shaped bacterium, designated as strain SYSU D60015T that formed yellowish colonies was isolated from a sandy soil collected from the Kumtag Desert in Xinjiang, China. Cells were Gram-stain-negative, oxidase-positive, catalase-negative and motile with a single polar flagellum. Growth optimum occurred between 28 and 37 °C, pH 7.0 and with 0-0.5% (W/V) NaCl. The predominant cellular fatty acids (> 5%) were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C19:0 cyclo ω8c, C18:1 ω7c 11-methyl and C16:0. The polar lipid profile contained one phosphatidylethanolamine, one diphosphatidylglycerol, one phosphatidylglycerol, one unidentified phospholipid, three unidentified aminolipids, two unidentified aminophospholipids and seven unidentified lipids. The only respiratory quinone was ubiquinone-10. Based on 16S rRNA gene sequence phylogenetic analysis, strain SYSU D60015T was found to form a distinct linage within the family Sneathiellaceae, and had 16S rRNA gene sequence similarities of 90.8% to Taonella mepensis H1T, and 90.2% to Ferrovibrio denitrificans S3T. The genome of SYSU D60015T was 5.66 Mb in size with 68.2% of DNA G + C content. The low digital DNA-DNA hybridization (dDDH, 18.0%), average nucleotide identity (ANI, 77.5%) and amino acid identity (AAI, 56.0%) values between SYSU D60015T and Ferrovibrio terrae K5T indicated that SYSU D60015T might represent a distinct genus. Based on the phylogenetic, phenotypic, chemotaxonomic and genomic data, we propose Desertibaculum subflavum gen. nov., sp. nov. as a novel species of a new genus within the family Sneathiellaceae. The type strain is SYSU D60015T (= NBRC 112952T = CGMCC 1.16256T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Ácidos Graxos/análise , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfolipídeos/análise , Fosfolipídeos/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-39037442

RESUMO

Two Gram-stain-negative, aerobic, milk-white coloured, non-motile, short rod-shaped bacteria, designated as strains SYSU D60010T and SYSU D60012T, were isolated from sand samples collected from the Taklimakan Desert of Xinjiang Province in China. Both strains were positive for oxidase, catalase and nitrate reduction, but negative for amylase, H2S production, hydrolysis of gelatin and cellulase. Strains SYSU D60010T and SYSU D60012T grew well at 28 °C, at pH 7 and had the same NaCl tolerance range of 0-1 % (w/v). The major fatty acids (>5 %) of strains SYSU D60010T and SYSU D60012T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), iso-C19 : 0 cyclo ω8c, C16 : 0 and iso-C18 : 1 2-OH. Q-10 was the only respiratory ubiquinone. Strains SYSU D60010T and SYSU D60012T showed high 16S rRNA gene sequence similarities to Aestuariivirga litoralis SYSU M10001T (94.2 and 94.1 %), Rhodoligotrophos jinshengii BUT-3T (92.0 and 91.9 %) and Rhodoligotrophos appendicifer 120-1T (91.8 and 91.7 %), and the genomes were 7.4 and 5.8 Mbp in size with DNA G+C contents of 62.8 and 63.0 mol%, respectively. Phylogenetic, phenotypic and chemotaxonomic characteristics indicated that these two strains represent a novel genus and two novel species within the family Aestuariivirgaceae. We propose the name Taklimakanibacter deserti gen. nov., sp. nov. for strain SYSU D60010T, representing the type strain of this species (=KCTC 52783T =NBRC 113344T) and Taklimakanibacter lacteus gen. nov., sp. nov. for strain SYSU D60012T, representing the type strain of this species (=KCTC 52785T=NBRC 113128T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Ácidos Graxos/química , DNA Bacteriano/genética , China , Ubiquinona/análogos & derivados , Areia/microbiologia
20.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39041196

RESUMO

Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.


Assuntos
Cianobactérias , Fotossíntese , Fotossíntese/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Biológica , Filogenia , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA