Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(40): 14384-14395, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37770467

RESUMO

The high content of nitrogen and sulfur-doped carbon dots (N, S-CDs) was designed to prevent the corrosion of X65 steel in an acidic medium. The corrosion-inhibiting abilities of related nanomaterials for X65 steel were acquired by electrochemical experiments, and the corroded products were investigated by FT-IR, XPS, and Raman analysis. The conclusions confirm that the N, S-CDs are a high-efficiency inhibitor. When the concentration is 200 mg/L, the inhibitive efficiency of X65 steel can reach up to 99.1% and it interacts with X65 steel through chemical and physical adsorption. Additionally, results from the spectroscopic studies show that the S-group is the main contributor to the chemical adsorption process.

2.
J Colloid Interface Sci ; 607(Pt 1): 45-52, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34492352

RESUMO

The property of an active material is not only influenced by its morphology and size, but also by its crystal phase. The present phase regulation of nickel sulfide is mainly achieved by controlling the participation of sulfur source in reaction. Thus, new perspectives direct at phase control need to be explored and supplemented. Herein, we proposed a novel coordination agent-dominated phase modulation strategy assisted by a hydrothermal process. It is found that increasing the amount of coordination agent can drove the phase transformation from the initial composite of ß-NiS/α-NiS/Ni3S4 to ß-NiS/α-NiS, and then to pure ß-NiS. The mechanism of phase regulation has been proposed, and the general application of this method has been demonstrated. By employing coordination agent, the size of resulted products is reduced, and the morphology is optimized. As a result, all of the pure ß-NiS electrodes indicate significantly enhanced specific capacity than the pristine ß-NiS/α-NiS/Ni3S4 composite. Notably, the sample synthesized with 3 mmol of urea (S11) shows uniform morphology and smallest size, and it gives a highest specific capacity of 223.8 mAh g-1 at 1 A g-1, almost 1.5 times of the original sample. The fabricated S11//rGO device delivers a high energy density of 56.6 Wh·kg-1 at a power density of 407.5 W·kg-1, and keeps an impressive capacity retention of 84% after 20,000 cycles. This work put forwards a new prospect for controlling the phase and composition of nickel sulfide based on coordination chemistry.

3.
Environ Res ; 206: 112301, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736639

RESUMO

The sluggish Ni(II)/Ni(III) redox cycle does not benefit perxymonosulfate (PMS) activation for recalcitrant pollutant degradation. To solve this problem, a heterogeneous catalyst, Cu0.2Ni0.8O/SBA-15 (CNS), was constructed to activate PMS for decomposing two sulfonamide antibiotics, sulfachlorpyridazine (SACP) and sulfapyridine (SAP). SACP and SAP were completely degraded over Cu0.2Ni0.8O/SBA-15/PMS (CNSP) after 90 min. O2.- was the dominant active species involved in the degradation of SACP and SAP. Structural analysis and elemental valence state observations indicated that Cu(Ⅰ) provided electrons through Cu-O-Ni bonds to realize the charge compensation for Ni(Ⅲ) in the CNSP system. Thus, the in situ Cu(I)/Cu(II) promoting the Ni(II)/Ni(III) cycle could accelerate the PMS activation. This work provides new insights into the electron transfer between transition metals and the charge compensation mechanism for PMS activation. The degradation mechanism was proposed based on the XPS results before and after the reaction, a radical quenching test, and an EPR test. Combined with the SACP and SAP degradation intermediates identified by LC-MS, we suggest that the choice of treatment process depends on the occurrence of a steric hindrance effect between the molecular structure of the degradation target and free radicals.


Assuntos
Antibacterianos , Cobre , Cobre/química , Níquel , Peróxidos , Dióxido de Silício , Sulfonamidas
4.
J Colloid Interface Sci ; 609: 838-851, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34838315

RESUMO

2,5-dihydroxy-1,4-dithiane (DDD) and 2,5-dimethy- [1.4] dithiane-2,5-diol (DTDD) two food flavors as environmentally-friendly inhibitors for Cu in 0.5 mol/L H2SO4 media were researched via theoretical calculation and experimental ways. Electrochemical measurement data showed that DDD and DTDD can exhibit high level anti-corrosion feature. The anti-corrosion efficiency of DDD and DTDD were as high as 99.6% and 98.9%, respectively. The atomic force microscope (AFM) and scanning electron microscope (SEM) tests showed that the Cu specimens were immersed in the H2SO4 with 5 mM DDD and DTDD for 30 h at the 298 K, and the Cu specimen surface was still smooth. Besides, the adsorption of DDD and DTDD at the interface of Cu/solution was comply with Langmuir adsorption. Theoretical calculation data showed that DDD exhibit more ascendant anti-corrosion feature than DTDD.


Assuntos
Cobre , Aço , Corrosão , Ácidos Sulfúricos
5.
Dalton Trans ; 50(33): 11512-11520, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34346450

RESUMO

While significant advances have been made in the synthesis of core-/multi-shell materials, the synthetic process usually involves a soft/hard template and complicated procedures. In particular, it is extremely difficult to fabricate single-component core-shell structures for nickel sulfides (NSs) with a controlled phase. In this work, we demonstrate a novel facile method to synthesize a single-component ß-NiS ball-in-ball microsphere. The ball-in-ball structure is easily obtained by uniquely employing 2-mercaptopropionic acid (2-MPA) as the sulfur source and ethanol as the solvent based on the Ostwald ripening process. In particular, our work demonstrates that the chemical structure of sulfur sources and solvents plays a key role in the formation of the pure ß-NiS ball-in-ball structure. When used as an electrode active material, the ß-NiS ball-in-ball microspheres exhibit two times stronger specific capacity and three times higher rate performance than NSs produced by a hydrothermal method. The fabricated NS-2//rGO asymmetrical supercapacitor (ASC) displays an energy density of 46.4 W h kg-1 at a power density of 799.0 W kg-1 and good cycling performance. Thus, this study provides a new method for controlling the phase and morphology of NSs.

6.
J Colloid Interface Sci ; 585: 287-301, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33296731

RESUMO

In this paper, the simple and low-cost water extraction way was used to acquisition Betel leaves extracts (BLE). The water as the extraction solvent has the characteristics of low price, environmentally friendly, and good solubility for other extraction solvents. BLE was researched as an environmental-friendly inhibitor via various experimental methods and theoretical calculations. Electrochemical experiments manifest that BLE can restrain reactions of the cathode and anode of Q235 steel. The BLE concentration was 400 mg/L, the anti-corrosion efficiency was close to 94%. The experimental data show that BLE can show high-quality anti-corrosion nature for Q235 steel immersing in 1 M hydrochloric acid (HCl) environment at a certain temperature range. The morphology maps of scanning electron microscope (SEM) and atomic force microscopy (AFM) strongly proves the data of electrochemical experiments. In addition, the BLE adsorption at the Q235 steel surface belongs to the Langmuir mono-layer adsorption. Quantum chemical calculations (QCC) and molecular dynamics simulations (MDS) effectually manifest that BLE can show decent anti corrosion character.


Assuntos
Aço , Água , Adsorção , Corrosão , Folhas de Planta
7.
J Colloid Interface Sci ; 583: 243-254, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002696

RESUMO

Metal metaphosphates, particularly those with core-shell structure, have showed extraordinary potential in energy storage field due to their superior chemical and physical properties. However, the core-shell metal metaphosphates with high energy density in supercapacitor application is rarely reported. Here, the core-shell structured Ni(OH)2/Ni(PO3)2 (NNP) hybrid electrode were prepared by one-step electrodeposition, which exhibits a superior specific capacitance of 1477 F g-1 at a current density of 1 A g-1. Furthermore, an aqueous asymmetric supercapacitor (ASC) based on NNP hybrid composite as cathode and reduced graphene oxide (rGO) as anode is assembled successfully to deliver a prominent energy density of 67 Wh kg-1 at 775 W kg-1 and splendid stability with capacitance retention of 81% after 8000 cycles. The outstanding electrochemical capabilities are attributed to the porous nanoflake and hierarchical core-shell structure of NNP hybrid composite, which can accelerate ion diffusion and charge transfer in redox reaction. These results indicate that nanohybrid NNP material has promise to be an advanced energy storage material.

8.
J Colloid Interface Sci ; 581(Pt A): 56-65, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768734

RESUMO

Nickel sulfide possesses ultra-high theoretical energy storage capacity. Though it is easily obtained, it is very difficult to exert its intrinsic strong capacity. In this work, a new strategy based on a binary synergy of sulfur sources is introduced. By regulating the molar ratio of two sulfur sources, a high-performance α-NiS/Ni3S4 binary hybrid is successfully synthesized. Interestingly, it is found that changing the molar ratio of two sulfur sources in hydrothermal process can efficiently regulate the components of product but cannot visibly affect its morphology. The electrochemical results indicate that this strategy is highly effective for improving the performance of nickel sulfide. As a result, a highest specific capacity of 214.9 mAh g-1 at 2 A g-1 was reached. In addition, the fabricated S3//rGO hybrid supercapacitor displays a highest energy density of 41.9 Wh kg-1 at a power density of 799.0 kW kg-1. Moreover, the device delivers an excellent cycle stability with 103% capacity retention rate after 10,000 cycles. These findings open a new avenue for the controlled synthesis of high-performance nickel sulfides or other metal sulfides.

9.
J Colloid Interface Sci ; 578: 677-684, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559483

RESUMO

Advanced aqueous batteries with abundant global reserves, large discharge capacity and long life span are crucial research objectives. Herein, a kind of aqueous Zn-ion battery was fabricated with ultra-thin Ni-Mn nanosheet electrode and zinc foil. A simple H2-annealing process was employed to handle the NiMnxOy nanosheets to form oxygen vacancy. Based on the formation of fast ion diffusion channels and the increase of active sites, the fabricated H-NiMnxOy nanosheet electrode displays an areal capacity of 0.68 mA h cm-2 at a current density of 2 mA cm-2 and an excellent cycling performance (almost no reduction after 6000 cycles). The fabricated H-NiMnxOy//Zn battery obtains a high areal capacity, up to 0.66 mA h cm-2 at a current density of 4 mA cm-2, and shows a long cycling stability (88.5% capacity retention after 5500 cycles). In particular, it has a high energy density, up to 1.13 mW cm-2 at a power density of 3.34 mW cm-2, more than many other similar devices. Thus, this research provides a new idea for the wide application of aqueous Zn-ion battery in intelligent equipment and electric vehicles.

10.
Phys Chem Chem Phys ; 22(8): 4592-4601, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32048667

RESUMO

In order to explore the effects of the structures of organic molecules on their performance and develop high-efficiency self-assembly monolayers (SAMs), two heterocycle-based indole compounds, namely FYBI and TYBI, have been synthesized by a simple route. Herein, we show that FYBI and TYBI can effectively self-assemble on a copper surface and form strong anti-corrosive monolayers to protect copper in acid medium. The compositions, morphologies, and thicknesses of the SAMs have been investigated by XPS, FTIR, SEM and ellipsometry analyses. The optimal self-assembly conditions and inhibition performance of the SAMs with O- or S-heterocycles have been studied by electrochemical tests. According to the results, TYBI displays more powerful inhibition performance than FYBI. Furthermore, the high-resolution XPS and quantum calculation results reveal that the S-heterocycle indole (TYBI) can readily donate electrons to the empty d orbital of Cu and form more robust, hydrophobic, and anti-corrosive SAMs than the O-heterocycle indole (FYBI). The inhibited corrosion is achieved by inhibiting the generation of Cu2+. This systematic study on the performance of various heterocycle-based organic compounds gives a fresh perspective for forming SAMs with certain characteristics, such as anti-corrosion ability or super-hydrophobicity.

11.
J Colloid Interface Sci ; 559: 115-123, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31614316

RESUMO

Ni3S4 is regarded as one of the promising electrode materials for energy storage, but the difficulty in obtaining its pure phase hinders its wide applications. In this work, we introduced a novel method to in-situ synthesize Ni3S4@reduced graphene oxide (rGO) composite, where graphene oxide (GO) was found to induce the oxidation of Ni2+ to Ni3+ and the morphology transformation from microbar to polyhedron during the hydrothermal process. The influence of the content and oxidation degree of GO on the phase composition and morphology of nickel sulfide is investigated. It is found that the oxygen-containing functional group of GO is responsible for the change of valence state, which thus drives the transformation of NiS/Ni3S4 towards Ni3S4. The obtained Ni3S4@rGO composite shows a high energy storage capacity (1830 F g-1 at 2 A g-1), remarkably higher than the unpurified phase NiS/Ni3S4 (830 F g-1). Correspondingly, the assembled asymmetry supercapacitor indicates a high energy density of 37.3 Wh kg-1 at a power density of 398 W kg-1. More importantly, the capacitance retention reaches 91.4 % after 10,000 cycles at a current density of 2 A g-1. Thus, this research overcomes the difficulty of synthesizing the pure Ni3S4 phase, which provides a new available pathway for constructing high-performance electrode materials.

12.
J Colloid Interface Sci ; 538: 519-529, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544069

RESUMO

Food flavors of 2-isobutylthiazole (ITT) and 1-(1,3-Thiazol-2-yl)ethanone (TEO) for the corrosion inhibition of X65 steel in H2SO4 were studied by electrochemical methods, atomic force microscopy (AFM), scanning electron microscopy (SEM) and theoretical calculations. Electrochemical experiments show that ITT and TEO can effectively inhibit the corrosion of cathode and anode of X65 steel, and they are mixed-type corrosion inhibitors. Surface topography analysis (SEM and AFM) also visually demonstrate that ITT and TEO form an effective barrier film on the X65 steel surface to isolate the corrosive medium. Theoretical calculations profoundly explain the inhibition mechanism of ITT and TEO at the molecular level. In addition, the adsorption behavior of ITT and TEO on the surface of X65 steel is consistent with Langmuir isotherm adsorption. The results of experimental and theoretical studies have shown that the inhibition effect of TEO is better than ITT for X65 in 0.5 M H2SO4.


Assuntos
Teoria Quântica , Aço/química , Ácidos Sulfúricos/química , Tiazóis/química , Adsorção , Técnicas Eletroquímicas , Microscopia de Força Atômica , Estrutura Molecular , Propriedades de Superfície
13.
RSC Adv ; 8(68): 38860-38871, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35558329

RESUMO

The inhibitive properties of four indazole-based compounds (IA, 4-FIA, 4-CIA, and 4-BIA) on copper corrosion in 0.5 M H2SO4 solution were investigated using electrochemical measurements, surface characterization techniques and molecular modelling methods. Electrochemical tests indicate that the inhibition efficiencies increase with incremental concentration and all halogeno-substituted indazoles (HIAs) possess superior inhibitive ability to native IA. The specific rating of inhibition performance obeys the order: IA < 4-FIA < 4-BIA < 4-CIA. All inhibition efficiencies of HIAs obtained were over 96% in 1 mM, especially, 4-CIA reaches 99.6%. Moreover, the corresponding inhibition mechanism was elucidated via quantum chemical calculations allied to molecular dynamics simulation. In summary, the present study can help us to gain insight into the effect of halogeno-substitution on the inhibition efficiency of the IA molecule.

14.
Sci Rep ; 6: 33305, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628901

RESUMO

The inhibitive ability of 2,6-diaminopyridine, tartaric acid and their synergistic effect towards mild steel corrosion in 0.5 M HCl solution was evaluated at various concentrations using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS), and weight loss experiments. Corresponding surfaces of mild steel were examined by atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) analysis. The experimental results are in good agreement and reveal a favorable synergistic effect of 2,6-diaminopyridine with tartaric acid, which could protect mild steel from corrosion effectively. Besides, quantum chemical calculations and Monte Carlo simulation were used to clarify the inhibition mechanism of the synergistic effect.

15.
J Colloid Interface Sci ; 472: 52-9, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27003499

RESUMO

Corrosion experiments and theoretical calculations were performed to investigate the inhibition mechanism of indazole (IA) and 5-aminoindazole (AIA) for copper in NaCl solution. The results obtained from weight loss and electrochemical experiments are in good agreement, and reveal that these compounds are high-efficiency inhibitors with inhibition efficiency order: AIA>IA, which was further confirmed by field emission scanning electronic microscope (FESEM) observation. Besides, the quantum chemical calculations and molecular dynamics (MD) simulation showed that both studied inhibitors are adsorbed strongly on the copper surface in parallel mode. The adsorption of these molecules on copper substrate was found to obey Langmuir isotherm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...