Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.692
Filtrar
1.
Neural Regen Res ; 20(2): 557-573, 2025 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819067

RESUMO

JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.

2.
Adv Sci (Weinh) ; : e2403640, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946588

RESUMO

Ovulation is vital for successful reproduction. Following ovulation, cumulus cells and oocyte are released, while mural granulosa cells (mGCs) remain sequestered within the post-ovulatory follicle to form the corpus luteum. However, the mechanism underlying the confinement of mGCs has been a longstanding mystery. Here, in vitro and in vivo evidence is provided demonstrating that the stiffening of mGC-layer serves as an evolutionarily conserved mechanism that prevents mGCs from escaping the post-ovulatory follicles. The results from spatial transcriptome analysis and experiments reveal that focal adhesion assembly, triggered by the LH (hCG)-cAMP-PKA-CREB signaling cascade, is necessary for mGC-layer stiffening. Disrupting focal adhesion assembly through RNA interference results in stiffening failure, mGC escape, and the subsequent development of an abnormal corpus luteum characterized by decreased cell density or cavities. These findings introduce a novel concept of "mGC-layer stiffening", shedding light on the mechanism that prevents mGC escape from the post-ovulatory follicle.

3.
Genes Dis ; 11(5): 101199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947741

RESUMO

As the most prevalent and reversible internal epigenetic modification in eukaryotic mRNAs, N 6-methyladenosine (m6A) post-transcriptionally regulates the processing and metabolism of mRNAs involved in diverse biological processes. m6A modification is regulated by m6A writers, erasers, and readers. Emerging evidence suggests that m6A modification plays essential roles in modulating the cell-fate transition of embryonic stem cells. Mechanistic investigation of embryonic stem cell maintenance and differentiation is critical for understanding early embryonic development, which is also the premise for the application of embryonic stem cells in regenerative medicine. This review highlights the current knowledge of m6A modification and its essential regulatory contribution to the cell fate transition of mouse and human embryonic stem cells.

4.
World J Hepatol ; 16(6): 932-950, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38948436

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a primary contributor to cancer-related mortality on a global scale. However, the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs are emerging markers for HCC diagnosis, prognosis, and therapeutic target. No study of LINC01767 in HCC was published. AIM: To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time. METHODS: DESeq2 Package was used to analyze different gene expressions. Receiver operating characteristic curves assessed the diagnostic performance. Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis. The least absolute shrinkage and selection operator (LASSO)-Cox was used to identify the prediction model. Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction, next generation sequencing was performed following LINC01767 over expression (GSE243371), and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out. In vitro experiment in Huh7 cell was carried out. RESULTS: LINC01767 was down-regulated in HCC with a log fold change = 1.575 and was positively correlated with the cancer stemness. LINC01767 was a good diagnostic marker with area under the curve (AUC) [0.801, 95% confidence interval (CI): 0.751-0.852, P = 0.0106] and an independent predictor for overall survival (OS) with hazard ratio = 1.899 (95%CI: 1.01-3.58, P = 0.048). LINC01767 nomogram model showed a satisfied performance. The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways. LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC > 0.75. LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line; the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro. CONCLUSION: LINC01767 was an important tumor suppressor gene in HCC with good diagnostic and prognostic performance.

5.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948798

RESUMO

Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is the most common liver disease worldwide. The progression to fibrosis, occurring against a backdrop of hepatic steatosis and inflammation, critically determines liver-related morbidity and mortality. Inflammatory processes contribute to various stages of MAFLD and thought to instigate hepatic fibrosis. For this reason, targeting inflammation has been heavily nominated as a strategy to mitigate liver fibrosis. Lipopolysaccharide binding protein (LBP) is a secreted protein that plays an established role in innate immune responses. Here, using adoptive transfer studies and tissue-specific deletion models we show that hepatocytes are the dominant contributors to circulating LBP. In a murine model of MAFLD, hepatocyte-specific deletion of LBP restrained hepatic inflammation and improved liver function abnormalities, but not measures of fibrosis. Human studies, including genetic evidence, corroborate an important role for LBP in hepatic inflammation with minimal impact on fibrosis. Collectively, our data argues against the idea that targeting hepatic inflammation is a viable approach to reducing fibrosis.

6.
Sci Adv ; 10(26): eadm7813, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924401

RESUMO

The global meridional overturning circulation (GMOC) is important for redistributing heat and, thus, determining global climate, but what determines its strength over Earth's history remains unclear. On the basis of two sets of climate simulations for the Paleozoic characterized by a stable GMOC direction, our research reveals that GMOC strength primarily depends on continental configuration while climate variations have a minor impact. In the mid- to high latitudes, the volume of continents largely dictates the speed of westerly winds, which in turn controls upwelling and the strength of the GMOC. At low latitudes, open seaways also play an important role in the strength of the GMOC. An open seaway in one hemisphere allows stronger westward ocean currents, which support higher sea surface heights (SSH) in this hemisphere than that in the other. The meridional SSH gradient drives a stronger cross-equatorial flow in the upper ocean, resulting in a stronger GMOC. This latter finding enriches the current theory for GMOC.

7.
J Environ Manage ; 365: 121579, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936018

RESUMO

Digital technology advancement provides a significant impetus to achieve China's "dual-carbon" goals, yet it also gives rise to a series of challenges. Therefore, studying the relationship between digital technology innovation and carbon emission efficiency is of paramount importance. This study theoretically analyzes and empirically tests the influence of digital technology innovation (DTI) on total factor carbon emission efficiency (TFCE) using panel data from 268 Chinese cities between 2006 and 2021. The results indicate that: (1) DTI exhibits a "U-shaped" pattern on urban TFCE, with a decrease followed by an increase. (2) Conventional technological innovation (TI) also displays a "U-shaped" relationship with TFCE, with the turning point occurring earlier than that of DTI. DTI surpasses TI in bringing about later-stage improvements in carbon emission efficiency. (3) Mechanism tests reveal that digital technology innovation indirectly affects TFCE through energy effects, technological effects, structural effects, and regulatory effects. (4) The impact of DTI on urban TFCE varies significantly due to differences in geographical location and resource endowments. (5) The development of urban polycentricity advances the turning point at which DTI enhances TFCE while amplifying both the initial "pro-carbon" effect and the subsequent "carbon reduction" effect of DTI. (6) DTI has a spatial spillover effect on urban TFCE. This study provides empirical evidence and policy recommendations for policymakers to advance the digitalization, greening, and decarbonization transformation of cities.

8.
Biomater Sci ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873991

RESUMO

PROteolysis TArgeting Chimeras have received increasing attention due to their capability to induce potent degradation of various disease-related proteins. However, the effective and controlled cytosolic delivery of current small-molecule PROTACs remains a challenge, primarily due to their intrinsic shortcomings, including unfavorable solubility, poor cell permeability, and limited spatiotemporal precision. Here, we develop a near-infrared light-controlled PROTAC delivery device (abbreviated as USDPR) that allows the efficient photoactivation of PROTAC function to achieve enhanced protein degradation. The nanodevice is constructed by encapsulating the commercial BRD4-targeting PROTACs (dBET6) in the hollow cavity of mesoporous silica-coated upconversion nanoparticles, followed by coating a Rose Bengal (RB) photosensitizer conjugated poly-L-lysine (PLL-RB). This composition enables NIR light-activatable generation of cytotoxic reactive oxygen species due to the energy transfer from the UCNPs to PLL-RB, which boosts the endo/lysosomal escape and subsequent cytosolic release of dBET6. We demonstrate that USDPR is capable of effectively degrading BRD4 in a NIR light-controlled manner. This in combination with NIR light-triggered photodynamic therapy enables an enhanced antitumor effect both in vitro and in vivo. This work thus presents a versatile strategy for controlled release of PROTACs and codelivery with photosensitizers using an NIR-responsive nanodevice, providing important insight into the design of effective PROTAC-based combination therapy.

10.
Neuroreport ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38874969

RESUMO

OBJECTIVE: Diabetic neuropathic pain (DNP) is one of the most prevalent symptoms of diabetes. The alteration of proteins in the spinal cord dorsal horn (SCDH) plays a significant role in the genesis and the development of DNP. Our previous study has shown electroacupuncture could effectively relieve DNP. However, the potential mechanism inducing DNP's genesis and development remains unclear and needs further research. METHODS: This study established DNP model rats by intraperitoneally injecting a single high-dose streptozotocin; 2 Hz electroacupuncture was used to stimulate Zusanli (ST36) and Kunlun (BL60) of DNP rats daily from day 15 to day 21 after streptozotocin injection. Behavioral assay, quantitative PCR, immunofluorescence staining, and western blotting were used to study the analgesic mechanism of electroacupuncture. RESULTS: The bradykinin B1 receptor (B1R) mRNA, nuclear factor-κB p65 (p65), substance P, and calcitonin gene-related peptide (CGRP) protein expression were significantly enhanced in SCDH of DNP rats. The paw withdrawal threshold was increased while body weight and fasting blood glucose did not change in DNP rats after the electroacupuncture treatment. The expression of B1R, p65, substance P, and CGRP in SCDH of DNP rats was also inhibited after the electroacupuncture treatment. CONCLUSION: This work suggests that the potential mechanisms inducing the allodynia of DNP rats were possibly related to the increased expression of B1R, p65, substance P, and CGRP in SCDH. Downregulating B1R, p65, substance P, and CGRP expression levels in SCDH may achieve the analgesic effect of 2 Hz electroacupuncture treatment.

11.
BMC Nephrol ; 25(1): 195, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862887

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and serious condition, particularly among elderly patients. It is associated with high morbidity and mortality rates, further compounded by the need for continuous renal replacement therapy in severe cases. To improve clinical decision-making and patient management, there is a need for accurate prediction models that can identify patients at a high risk of mortality. METHODS: Data were extracted from the Dryad Digital Repository. Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) logistic regression analysis to identify independent risk factors and construct a predictive nomogram for mortality within 28 days after continuous renal replacement therapy in elderly patients with acute kidney injury. The discrimination of the model was evaluated in the validation cohort using the area under the receiver operating characteristic curve (AUC), and calibration was evaluated using a calibration curve. The clinical utility of the model was assessed using decision curve analysis (DCA). RESULTS: A total of 606 participants were enrolled and randomly divided into two groups: a training cohort (n = 424) and a validation cohort (n = 182) in a 7:3 proportion. A risk prediction model was developed to identify independent predictors of 28-day mortality in elderly patients with AKI. The predictors included age, systolic blood pressure, creatinine, albumin, phosphorus, age-adjusted Charlson Comorbidity Index (CCI), Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and sequential organ failure assessment (SOFA) score. These predictors were incorporated into a logistic model and presented in a user-friendly nomogram. In the validation cohort, the model demonstrated good predictive performance with an AUC of 0.799. The calibration curve showed that the model was well calibrated. Additionally, DCA revealed significant net benefits of the nomogram for clinical application. CONCLUSION: The development of a nomogram for predicting 28-day mortality in elderly patients with AKI receiving continuous renal replacement therapy has the potential to improve prognostic accuracy and assist in clinical decision-making.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Nomogramas , Humanos , Feminino , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/terapia , Masculino , Idoso , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Estudos de Coortes , Fatores de Risco , Medição de Risco/métodos
12.
Respir Med Case Rep ; 50: 102051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868164

RESUMO

The advancement of molecular pathology techniques has led to the discovery of rare EGFR mutations for targeted therapy in lung cancer. Additionally, a substantial body of evidence indicates a connection between the development of lung cancer and genetic variations in the EGFR gene. Here, we present a case report of a patient with multifocal lung adenocarcinoma who possessed a rare germline mutation, EGFR R776H. An investigation into the family history of the patient exposed the notable incidence of lung adenocarcinoma, indicating a plausible genetic vulnerability to the ailment. To be specific, the patient's older brother and sister both suffered from lung cancer, which underlines the hereditary predisposition. Furthermore, it should be noted that the patient's daughter has inherited the germline mutation and also presented with multiple lung ground-glass nodules, emphasizing the clinical importance of this genetic variation. Following the lobectomy, the patient received treatment with almonertinib, a third-generation EGFR tyrosine kinase inhibitor (TKI), and at the latest follow-up, the patient has achieved partial remission. This case highlights the significance of taking into account germline possibilities when multiple lesions carry the same mutation. It stresses the importance of acquiring a comprehensive family history and performing genetic testing on leukocytes. Moreover, for the infrequent EGFR R776H mutation, third generation EGFR-TKIs may be a viable option.

13.
Sci Total Environ ; 941: 173782, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848916

RESUMO

The pollution burdens and compositions of atmospheric brown carbon (BrC) that determine their impacts on climate-health-ecosystems have not been well studied, particularly in some mega-economic coastal areas. Herein, atmospheric BrC samples synchronously collected from urban Shanghai (SH) and Huaniao Island (HNI) in the East China Sea during winter were characterized through ultrahigh-performance liquid chromatography-diode array detector-high resolution mass spectrometry (UHPLC-DAD-HRMS). The three polarity-dependent BrC fractions exhibited significant differences in both light absorption and chromophore composition. The average light absorption coefficients of BrC subfractions at 365 nm in SH were 2.6-3.7 times higher than those in HNI. The water-insoluble BrC (WIS-BrC) and humic-likes BrC (HULIS-BrC) dominated the total BrC absorption in SH (45 ± 7 %) and HNI (43 ± 6 %), respectively. Compared with SH, the higher O/Cw, lower molecule conjugation degree, and reduced mass absorption efficiency at 365 nm (MAE365) in HNI imply a potential bleaching mechanism during the transportation oxidation process. Thousands of BrC chromophores were detected at both sites. >20 major chromophores with strong absorption were unambiguously identified in HULIS-BrC and accounted for ∼40 % of the HULIS light absorption at 365 nm at both sites. These chromophores in SH HULIS-BrC featured oxygenated aromatics and nitroaromatics, while alkyl benzenesulfonic acids with emissions from cargo ships were found in HNI HULIS-BrC. Moreover, 22 major chromophores identified in WIS-BrC included alkaloids, polyaromatic hydrocarbons (PAHs), and carbonyl oxygenated PAHs, contributing 39 % and 49 % of the WIS-BrC light absorption at 365 nm in SH and HNI, respectively. Ascertaining the molecular-specific optical properties of BrC chromophores over the mega-economic coastal area is helpful for the predictive understanding of the sources and evolution of BrC, as well as its atmospheric behavior from land to sea.

14.
Exp Gerontol ; 194: 112478, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866193

RESUMO

BACKGROUND: Cerebral small vessel disease (CSVD) closely correlates to cognitive impairment, but its pathophysiology and the neurovascular mechanisms of cognitive deficits were unclear. We aimed to explore the dysfunctional patterns of neurovascular coupling (NVC) in patients with CSVD and further investigate the neurovascular mechanisms of CSVD-related cognitive impairment. METHODS: Forty-three patients with CSVD and twenty-four healthy controls were recruited. We adopted resting-state functional magnetic resonance imaging combined with arterial spin labeling to investigate the NVC dysfunctional patterns in patients with CSVD. The Human Brain Atlas with 246 brain regions was applied to extract the NVC coefficients for each brain region. Partial correlation analysis and mediation analysis were used to explore the relationship between CSVD pathological features, NVC dysfunctional patterns, and cognitive decline. RESULTS: 8 brain regions with NVC dysfunction were found in patients with CSVD (p < 0.025, Bonferroni correction). The NVC dysfunctional patterns in regions of the default mode network and subcortical nuclei were negatively associated with lacunes, white matter hyperintensities burden, and the severity of CSVD (FDR correction, q < 0.05). The NVC decoupling in regions located in the default mode network positively correlated with delayed recall deficits (FDR correction, q < 0.05). Mediation analysis suggested that the decreased NVC pattern of the left superior frontal gyrus partially mediated the impact of white matter hyperintensities on delayed recall (Mediation effect: -0.119; 95%CI: -11.604,-0.458; p < 0.05). CONCLUSION: The findings of this study reveal the NVC dysfunctional pattern in patients with CSVD and illustrate the neurovascular mechanism of CSVD-related cognitive impairment. The NVC function in the left superior frontal gyrus may serve as a promising biomarker and therapeutic target for memory deficits in patients with CSVD.

15.
Adv Mater ; : e2400259, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881361

RESUMO

Li-rich NMCs layered oxides, with the general formula of Li[LixNiyMnzCo1- x - y - z]O2, are known for their exceptionally high capacities but remain yet to be practicalized in the real world. They have attracted enormous research attention due to their complex structure and intriguing redox mechanisms, with a particular focus on anionic redox over the past decade. While fundamental understandings are fruitful, the practical considerations are emphasized here by providing perspectives on how Li-rich NMCs are limited by practical roadblocks and guidelines on how to cope with these limitations. It is also demonstrated that, via a techno-economic analysis, Li-rich NMCs have material cost ($/kg) highly dependent on the lithium price, but still preserve the dominance of lower pack cost ($/kWh) than other cathode candidates principally owing to their larger material energy densities. In addition to their pure application in electric-vehicle batteries, using them as "electrode additive" or "sacrificial agent" can further multiply their practicalities in assortment of scenarios, which is further discussed.

16.
BDJ Open ; 10(1): 43, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830840

RESUMO

INTRODUCTION: Dental implantation has emerged as an efficient substitute for missing teeth, which is essential for restoring oral function and aesthetics. Compared to traditional denture repair approaches, dental implants offer better stability and sustainability. The position, angle, and depth of dental implants are crucial factors for their long-term success and necessitate high-precision operation and technical support. METHOD: We propose an integrated dual-arm high-precision oral implant surgery navigation positioning system and a corresponding control strategy. Compared with traditional implant robots, the integrated dual-arm design greatly shortens the preparation time before surgery and simplifies the operation process. We propose a novel control flow and module for the proposed structure, including an Occluded Target Tracking Module (OTTM) for occlusion tracking, a Planting Plan Development Module (PPDM) for generating implant plans, and a Path Formulation Module (PFM) for controlling the movement path of the two robot arms. RESULT: Under the coordinated control of the aforementioned modules, the robot achieved excellent accuracy in clinical trials. The average angular error and entry point error for five patients who underwent implant surgery using the proposed robot were 2.1° and 0.39 mm, respectively. CONCLUSION: In essence, our study introduces an integrated dual-arm high-precision navigation system for oral implant surgery, resolving issues like lengthy preoperative preparation and static surgical planning. Clinical results confirm its efficacy, emphasizing its accuracy and precision in guiding oral implant procedures.

18.
Plants (Basel) ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891270

RESUMO

Understanding the regulation of autotetraploid sterility is essential for harnessing the strong advantages in genomic buffer capacity, biodiversity, and heterosis of autotetraploid rice. miRNAs play crucial roles in fertility regulation, yet information about their reproductive roles and target genes in tetraploid rice remains limited. Here, we used three tetraploid lines, H1 (fertile), HF (fertile), and LF (sterile), to investigate cytological features and identify factors associated with autotetraploid sterility. LF showed abnormal meiosis, resulting in low pollen fertility and viability, ultimately leading to scarce fertilization and a low-seed setting compared to H1 and HF. RNA-seq revealed 30 miRNA-candidate target pairs related to autotetraploid pollen sterility. These pairs showed opposite expression patterns, with differential expression between fertile lines (H1 and HF) and the sterile line (LF). qRT-PCR confirmed that miR9564, miR528, and miR27874 were highly expressed in the anthers of H1 and HF but not in LF, while opposite results were obtained in their targets (ARPS, M2T, and OsRPC53). Haplotype and expression pattern analyses revealed that ARPS was specifically expressed in lines with the same haplotype of MIR9564 (the precursor of miR9564) as LF. Furthermore, the Dual-GFP assay verified that miR9564 inhibited the fluorescence signal of ARPS-GFP. The over-expression of ARPS significantly decreased the seed setting rate (59.10%) and pollen fertility (50.44%) of neo-tetraploid rice, suggesting that ARPS plays important roles in autotetraploid pollen sterility. This study provides insights into the cytological characteristic and miRNA expression profiles of tetraploid lines with different fertility, shedding light on the role of miRNAs in polyploid rice.

19.
Redox Biol ; 74: 103223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851078

RESUMO

Ongoing inflammation in the heart is positively correlated with adverse remodeling, characterized by elevated levels of cytokines that stimulate activation of cardiac fibroblasts. It was found that CaMKIIδ response to Ang II or TAC triggers the accumulation of ROS in cardiomyocytes, which subsequently stimulates NF-κB/NLRP3 and leads to an increase in IL-6, IL-1ß, and IL-18. This is an important causative factor in the occurrence of adverse remodeling in heart failure. Sweroside is a biologically active natural iridoids extracted from Lonicerae Japonicae Flos. It shows potent anti-inflammatory and antioxidant activity in various cardiovascular diseases. In this study, we found that sweroside inhibited ROS-mediated NF-κB/NLRP3 in Ang II-treated cardiomyocytes by directly binding to CaMKIIδ. Knockdown of CaMKⅡδ abrogated the effect of sweroside regulation on NF-κB/NLRP3 in cardiomyocytes. AAV-CaMKⅡδ induced high expression of CaMKⅡδ in the myocardium of TAC/Ang II-mice, and the inhibitory effect of sweroside on TAC/Ang Ⅱ-induced elevation of NF-κB/NLRP3 was impeded. Sweroside showed significant inhibitory effects on CaMKIIδ/NF-κB/NLRP3 in cardiomyocytes from TAC/Ang Ⅱ-induced mice. This would be able to mitigate the adverse events of myocardial remodeling and contractile dysfunction at 8 weeks after the onset of the inflammatory response. Taken together, our findings have revealed the direct protein targets and molecular mechanisms by which sweroside improves heart failure, thereby supporting the further development of sweroside as a therapeutic agent for heart failure.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Insuficiência Cardíaca , Miócitos Cardíacos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Modelos Animais de Doenças
20.
Cell Death Dis ; 15(6): 458, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937437

RESUMO

SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia , Humanos , Animais , COVID-19/imunologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Células HEK293 , Camundongos Endogâmicos BALB C , Ligação Proteica , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...