Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Food Nutr Res ; 110: 243-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38906588

RESUMO

Alcohol intake has become one of the leading risks to human health and wellness, among which acute and/or chronic alcohol-induced liver injury is a leading threaten, with few therapeutic options other than abstinence. In recent years, studies suggested that certain bioactive peptides from food sources could represent natural and safe alternatives for the prevention of alcoholic liver injury. Hence, this chapter focus on the advanced research on bioactive peptides exerting hepatoprotective activity against alcoholic liver injury. The main sources of protein, strategies for the preparation of hepatoprotective hydrolysates and peptides, underlying mechanisms of peptides on hepatoprotection, and possible structure-activity relationship between peptides and hepatoprotective activity were summarized and discussed, aiming to give a systematic insight into the research progress of hepatoprotective peptides. However, more efforts would be needed to give a clearer insight into the underlying mechanisms and structure-activity relationship before using hepatoprotective peptides as functional food ingredients or dietary supplements.


Assuntos
Hepatopatias Alcoólicas , Peptídeos , Humanos , Hepatopatias Alcoólicas/prevenção & controle , Peptídeos/farmacologia , Peptídeos/química , Substâncias Protetoras/farmacologia , Animais , Relação Estrutura-Atividade , Fígado/efeitos dos fármacos
2.
Food Funct ; 15(13): 7124-7135, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38881239

RESUMO

Alcoholic liver injury has become a leading threat to human health, with complicated pathogenesis and limited therapeutic options. Our previous study showed that Musculus senhousei peptides (MSPs) exhibit protective potential against early-stage alcoholic liver injury, although the underlying mechanism is not yet clear. In this study, histopathological analysis, mRNA abundance of injury-associated biomarkers, the gut microbiota, and faecal metabolome were evaluated using a mouse model subjected to acute alcohol exposure, aiming to identify the mechanism by which MSP can alleviate alcoholic hepatotoxicity. The results showed that MSP intervention significantly ameliorated symptoms of liver injury (suppressed serum ALT increment, hepatic lipid accumulation, and neutrophil infiltration in liver tissue), and reversed the abnormal mRNA abundance of biomarkers associated with oxidative stress (iNOS), inflammation (TNF-α, IL-1ß, MCP-1, TNF-R1, and TLR4), and apoptosis (Bax and Casp. 3) in the liver. Moreover, MSP improved intestinal barrier function by increasing the expression of tight junction proteins (Claudin-1 and Claudin-3). Further analysis of faecal microbiota and metabolome revealed that MSP promoted the growth of tryptophan-metabolizing bacteria (Clostridiales, Alistipes, and Odoribacter), leading to increased production of indole derivatives (indole-3-lactic acid and N-acetyltryptophan). These results suggested that MSPs may alleviate alcohol-induced liver injury targeting the gut-liver axis, and could be an effective option for the prevention of alcoholic liver injury.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Fígado , Camundongos Endogâmicos C57BL , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Peptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças
3.
J Nutr ; 154(4): 1119-1129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365119

RESUMO

BACKGROUND: The intestinal epithelium is one of the fastest self-renewal tissues in the body, and glutamine plays a crucial role in providing carbon and nitrogen for biosynthesis. In intestinal homeostasis, phosphorylation-mediated signaling networks that cause altered cell proliferation, differentiation, and metabolic regulation have been observed. However, our understanding of how glutamine affects protein phosphorylation in the intestinal epithelium is limited, and identifying the essential signaling pathways involved in regulating intestinal epithelial cell growth is particularly challenging. OBJECTIVES: This study aimed to identify the essential proteins and signaling pathways involved in glutamine's promotion of porcine intestinal epithelial cell proliferation. METHODS: Phosphoproteomics was applied to describe the protein phosphorylation landscape under glutamine treatment. Kinase-substrate enrichment analysis was subjected to predict kinase activity and validated by qRT-PCR and Western blotting. Cell Counting Kit-8, glutamine rescue experiment, chloroquine treatment, and 5-fluoro-2-indolyl deschlorohalopemide inhibition assay revealed the possible underlying mechanism of glutamine promoting porcine intestinal epithelial cell proliferation. RESULTS: In this study, glutamine starvation was found to significantly suppress the proliferation of intestinal epithelial cells and change phosphoproteomic profiles with 575 downregulated sites and 321 upregulated sites. Interestingly, phosphorylation of eukaryotic initiation factor 4E-binding protein 1 at position Threonine70 was decreased, which is a crucial downstream of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Further studies showed that glutamine supplementation rescued cell proliferation and mTORC1 activity, dependent on lysosomal function and phospholipase D activation. CONCLUSION: In conclusion, glutamine activates mTORC1 signaling dependent on phospholipase D and a functional lysosome to promote intestinal epithelial cell proliferation. This discovery provides new insight into regulating the homeostasis of the intestinal epithelium, particularly in pig production.


Assuntos
Glutamina , Fosfolipase D , Animais , Suínos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glutamina/farmacologia , Glutamina/metabolismo , Fosfolipase D/metabolismo , Intestinos , Proteínas/metabolismo , Mucosa Intestinal/metabolismo , Proliferação de Células
4.
Sci Rep ; 14(1): 201, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167867

RESUMO

Previous observational studies have suggested an association between tryptophan (TRP)-kynurenine (KYN) pathway and inflammatory bowel disease (IBD). However, whether there is a causal relationship among them remains unclear. Therefore, a two-sample Mendelian randomization (MR) study was conducted to explore the potential causal effects of crucial metabolites in TRP-KYN pathway on IBD and its subtypes. Using summary data from genome-wide association studies, a two-sample MR was employed to evaluate the genetic associations between TRP and KYN as exposures and IBD as an outcome. The inverse variance weighted method was used as the primary MR analysis, with MR-Egger, weighted mode, simple mode, and weighted median methods as complementary analyses. The odds ratios (OR) and 95% confidence intervals (CI) were determined for TRP-IBD (OR 0.739, 95% CI [0.697; 0.783]), TRP-UC (OR 0.875, 95% CI [0.814; 0.942]), TRP-CD (OR 0.685, 95% CI [0.613; 0.765]), KYN-IBD (OR 4.406, 95% CI [2.247; 8.641]), KYN-UC (OR 2.578, 95% CI [1.368; 4.858], and KYN-CD (OR 13.516, 95% CI [4.919; 37.134]). Collectively, the MR analysis demonstrated a significant protective association between TRP and IBD, whereas KYN was identified as a risk factor for IBD.


Assuntos
Doenças Inflamatórias Intestinais , Cinurenina , Humanos , Triptofano , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Inflamatórias Intestinais/genética
5.
Animals (Basel) ; 13(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760316

RESUMO

The intestinal epithelium is known for its rapid self-renewal, and glutamine is crucial in providing carbon and nitrogen for biosynthesis. However, understanding how glutamine affects gene expression in the intestinal epithelium is limited, and identifying the essential genes and signals involved in regulating intestinal epithelial cell growth is particularly challenging. In this study, glutamine supplementation exhibited a robust acceleration of intestinal epithelial cell proliferation and stem cell expansion. RNA sequencing indicated diverse transcriptome changes between the control and glutamine supplementation groups, identifying 925 up-regulated and 1152 down-regulated genes. The up-regulated DEGs were enriched in the KEGG pathway of cell cycle and GO terms of DNA replication initiation, regulation of phosphatidylinositol 3-kinase activity, DNA replication, minichromosome maintenance protein (MCM) complex, and ATP binding, whereas the down-regulated DEGs were enriched in the KEGG pathway of p53 signaling pathway, TNF signaling pathway, and JAK-STAT signaling pathway and GO terms of inflammatory response and intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress. Furthermore, GSEA analysis revealed a significant up-regulation of the cell cycle, DNA replication initiation, ATP-dependent RNA helicase activity, and down-regulation of the TNF signaling pathway. The protein-protein association network of the intersecting genes highlighted the significance of DNA replication licensing factors (MCM3, MCM6, and MCM10) in promoting intestinal epithelial growth in response to glutamine. Based on these findings, we propose that glutamine may upregulate DNA replication licensing factors, leading to increased PI3K/Akt signaling and the suppression of TNF, JAK-STAT, and p53 pathways. Consequently, this mechanism results in the proliferation of porcine intestinal epithelial cells and the expansion of intestinal stem cells.

6.
Int Immunopharmacol ; 121: 110509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369160

RESUMO

Mucosal healing is essential for treating ulcerative colitis (UC), which results from imbalanced macrophage polarization and dysregulated inflammatory responses. However, the mechanisms of cellular communication and signal transduction that regulate mucosal healing among macrophage subtypes require further investigation. We use bulk and single-cell RNA sequencing analysis to reveal that macrophage subtypes vary in different UC states. At the same time, chemokine and angiogenesis signaling is strongly associated with M2 macrophage's infiltrated proportion. To get more insight into subtypes of macrophages in mucosal healing, we divided macrophages into M1, M2b, and M2d macrophages. Based on the differentially expressed genes (DEGs) between M2d and M1 macrophages, KEGG and GO analysis highlights M2d macrophages' ability to alleviate inflammation and promote epithelial healing. Trajectory analysis revealed opposite differentiation of macrophage subsets between UC and healthy groups, with M1 and M2d macrophages coexisting in the same differentiation branch under UC conditions. Along the pseudotime axis, CCL3 and VEGFA expression increased in UC, while IL10RA remained stable in UC but increased in healthy controls. CellChat identified CCL3-CCR1 has strong communication between M1 and M2d macrophages, while the IL10 signaling pathway is activated explicitly in M2d macrophages to mitigate inflammation and promote epithelial healing. We also speculate that high levels of VEGFA activate endothelial cells expressing VEGFR and worsen inflammation. To conclude, we suggested IL10 and VEGF signaling in M2d macrophages as potential therapeutic targets for mucosal healing. However, it is necessary to establish reliable methods for isolating and purifying M2d macrophages before these targets can be effectively utilized.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/metabolismo , Interleucina-10/metabolismo , Células Endoteliais , Transcriptoma , Macrófagos/metabolismo , Inflamação/metabolismo
7.
Int Immunopharmacol ; 117: 109840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827928

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is defined as chronic inflammation in the gastrointestinal tract. Notably, more than 20% of people with IBD experience depressive symptoms. Understanding the immunological mechanism of chronic intestinal inflammation on cognitive behavior has become a key research focus. Previous studies have shown that a dysregulated immune response contributes to chronic inflammation and depressive symptoms. The tolerant phenotype exhibited by immune cells regulates the course of chronic inflammation in distinct ways. In addition, neuroglia, such as microglia and astrocytes specific to the brain, are also influenced by deregulated inflammation to mediate the development of depressive symptoms. The kynurenine pathway (KP), a significant tryptophan metabolic pathway, transforms tryptophan into a series of KP metabolites that modulate chronic inflammation and depressive symptoms. In particular, indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in the KP, is activated by chronic inflammation and leads to the production of kynurenine. In addition, disruption of the brain-gut axis induced by IBD allows kynurenine to cross the blood-brain barrier (BBB) and form a series of neuroactive kynurenine metabolites in glial cells. Among them, quinolinic acid continuously accumulates in the brain, indicating depression. Thus, KP metabolites are critical for driving the comorbidity of IBD and depressive symptoms. In this review, the pathological mechanism of KP metabolite-mediated chronic intestinal inflammation and depressive symptoms by regulating the immune response is summarized according to the latest reports.


Assuntos
Colite Ulcerativa , Cinurenina , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Depressão , Inflamação/metabolismo , Comorbidade
8.
J Tissue Eng ; 14: 20417314221149882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699635

RESUMO

The intestinal tract is a vital organ responsible for digestion and absorption in the human body and plays an essential role in pathogen invasion. Compared with other traditional models, gut-on-a-chip has many unique advantages, and thereby, it can be considered as a novel model for studying intestinal functions and diseases. Based on the chip design, we can replicate the in vivo microenvironment of the intestine and study the effects of individual variables on the experiment. In recent years, it has been used to study several diseases. To better mimic the intestinal microenvironment, the structure and function of gut-on-a-chip are constantly optimised and improved. Owing to the complexity of the disease mechanism, gut-on-a-chip can be used in conjunction with other organ chips. In this review, we summarise the human intestinal structure and function as well as the development and improvement of gut-on-a-chip. Finally, we present and discuss gut-on-a-chip applications in inflammatory bowel disease (IBD), viral infections and phenylketonuria. Further improvement of the simulation and high throughput of gut-on-a-chip and realisation of personalised treatments are the problems that should be solved for gut-on-a-chip as a disease model.

9.
Cell Mol Life Sci ; 79(10): 523, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121491

RESUMO

Intestinal stem cells (ISCs) decode and coordinate various types of nutritional information from the diet to support the crypt-villus axis architecture, but how specific dietary molecules affect intestinal epithelial homeostasis remains unclear. In the current study, L-glutamate (Glu) supplementation in either a nitrogen-free diet (NFD) or a corn-soybean meal diet (CSMD) stimulated gut growth and ISC expansion in weaned piglets. Quantitative proteomics screening identified the canonical Wnt signalling pathway as a central regulator of intestinal epithelial development and ISC activity in vivo. Importantly, the Wnt transmembrane receptor Frizzled7 (FZD7) was upregulated in response to dietary Glu patterns, and its perturbations in intestinal organoids (IOs) treated with a specific inhibitor and in FZD7-KO IPEC-J2 cells disrupted the link between Glu inputs and ß-catenin signalling and a subsequent reduction in cell viability. Furthermore, co-localization, coimmunoprecipitation (Co-IP), isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) revealed that Glu served as a signalling molecule directly bound to FZD7. We propose that FZD7-mediated integration of the extracellular Glu signal controls ISC proliferation and differentiation, which provides new insights into the crosstalk of nutrients and ISCs.


Assuntos
Ácido Glutâmico , beta Catenina , Animais , Proliferação de Células , Ácido Glutâmico/metabolismo , Células-Tronco , Suínos , Via de Sinalização Wnt , beta Catenina/metabolismo
10.
Stem Cell Rev Rep ; 18(6): 2137-2151, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181185

RESUMO

Intestinal dysfunction is frequently driven by abnormalities of specific genes, microbiota, or microenvironmental factors, which usually differ across individuals, as do intestinal physiology and pathology. Therefore, it's necessary to develop personalized therapeutic strategies, which are currently limited by the lack of a simulated intestine model. The mature human intestinal mucosa is covered by a single layer of columnar epithelial cells that are derived from intestinal stem cells (ISCs). The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments. However, a simulated intestine model will serve as an indispensable foundation for personalized drug screening. In this article, we review the advantages and disadvantages of conventional 2-dimensional models, intestinal organoid models, and current microfluidic intestine-on-a-chip (IOAC) models. The main technological strategies are summarized, and an advanced microfluidic primary IOAC model is proposed for personalized intestinal medicine. In this model, primary ISCs and the microbiome are isolated from individuals and co-cultured in a multi-channel microfluidic chip to establish a microengineered intestine device. The device can faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions. Moreover, the ISCs can be genetically edited before seeding, and monitoring sensors and post-analysis abilities can also be incorporated into the device to achieve high-throughput and rapid pharmaceutical studies. We also discuss the potential future applications and challenges of the microfluidic platform. The development of cell biology, biomaterials, and tissue engineering will drive the advancement of the simulated intestine, making a significant contribution to personalized medicine in the future. Graphical abstract The intestine is a primary organ for digestion, absorption, and metabolism, as well as a major site for the host-commensal microbiota interaction and mucosal immunity. The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments, though physiological 3-dimensional of the native small intestinal epithelial tissue has been well documented. An intestinal stem cells-based microfluidic intestine-on-a-chip model that faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions will make a significant contribution.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Humanos , Mucosa Intestinal , Intestinos , Medicina de Precisão
11.
Mol Nutr Food Res ; 65(17): e2100406, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216418

RESUMO

SCOPE: The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS: In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION: The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.


Assuntos
Carnosina/farmacologia , Intestinos/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/citologia , Intestinos/metabolismo , Intestinos/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
12.
J Cell Physiol ; 235(7-8): 5613-5627, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960439

RESUMO

Heat stress induced by continuous high ambient temperatures or strenuous exercise in humans and animals leads to intestinal epithelial damage through the induction of intracellular stress response. However, the precise mechanisms involved in the regulation of intestinal epithelial cell injury, especially intestinal stem cells (ISCs), remain unclear. Thereby, in vitro a confluent monolayer of IPEC-J2 cells was exposed to the high temperatures (39, 40, and 41°C), the IPEC-J2 cell proliferation, apoptosis, differentiation, and barrier were determined, as well as the expression of GRP78, which is a marker protein of endoplasmic reticulum stress (ERS). The Wnt/ß-catenin pathway-mediated regenerative response was validated using R-spondin 1 (Rspo1). And ex-vivo, three-dimensional cultured enteroids were developed from piglet jejunal crypt and employed to assess the ISC activity under heat exposure. The results showed that exposure to 41°C for 72 hr, rather than 39°C and 40°C, decreased IPEC-J2 cell viability, inhibited cell proliferation and differentiation, induced ERS and cell apoptosis, damaged barrier function and restricted the Wnt/ß-catenin pathway. Nevertheless, Wnt/ß-catenin reactivation via Rspo1 protects the intestinal epithelium from heat exposure-induced injury. Furthermore, exposure to 41°C for 24 hr reduced ISC activity, stimulated crypt-cell apoptosis, upregulated the expression of GRP78 and caspase-3, and downregulated the expression of ß-catenin, Lgr5, Bmi1, Ki67, KRT20, ZO-1, occludin, and claudin-1. Taken together, we conclude that heat exposure induces ERS and downregulates the Wnt/ß-catenin signaling pathway to disrupt epithelial integrity by inhibiting the intestinal epithelial cell proliferation and stem cell expansion.


Assuntos
Proliferação de Células/genética , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/genética , Mucosa Intestinal/metabolismo , Animais , Apoptose/genética , Caspase 3/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/metabolismo , Temperatura Alta/efeitos adversos , Humanos , Mucosa Intestinal/crescimento & desenvolvimento , Complexo Repressor Polycomb 1/genética , Células-Tronco/metabolismo , Suínos/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
13.
Curr Stem Cell Res Ther ; 14(7): 583-590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31729290

RESUMO

The intestine serves mainly as a place for digestion and absorption and functions as an immune and endocrine organ. Intestinal stem cells (ISCs) play critical roles in the maintenance of intestinal homeostasis and regeneration, and a complex of signaling pathways is involved in these processes. The Notch signaling pathway is induced via distinct cell-to-cell connections, which are activated through the binding of the Notch ligand on the surface of niche cells to the Notch receptor on ISCs. Numerous studies have shown the central importance of Notch signaling in the proliferation and differentiation of ISCs. Here, we summarize the latest research progress on the crucial functions of Notch signaling in maintaining homeostasis and determining the cell fate of ISCs. Furthermore, the challenges of Notch signaling in colon cancer therapy strategies are also discussed. Several important questions regarding Notch regulation of ISCs are proposed.


Assuntos
Diferenciação Celular , Proliferação de Células , Homeostase , Intestinos/citologia , Receptores Notch/metabolismo , Células-Tronco/citologia , Animais , Humanos , Intestinos/fisiologia , Transdução de Sinais , Células-Tronco/metabolismo
14.
J Agric Food Chem ; 67(34): 9510-9521, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31382738

RESUMO

Glutamate (Glu) is a critical nutritional regulator of intestinal epithelial homeostasis. In addition, intestinal stem cells (ISCs) at crypt bases are known to play important roles in maintaining the renewal and homeostasis of the intestinal epithelium, and the aspects of communication between Glu and ISCs are still unknown. Here, we identify Glu and mammalian target of rapamycin complex 1 (mTORC1) as essential regulators of ISC expansion. The results showed that extracellular Glu promoted ISC expansion, indicated by increased intestinal organoid forming efficiency and budding efficiency as well as cell proliferation marker Ki67 immunofluorescence and differentiation marker Keratin 20 (KRT20) expression. Moreover, the insulin receptor (IR) mediating phosphorylation of the insulin receptor substrate (IRS) and downstream signaling phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was involved in this response in ISCs. As expected, Glu-induced mTORC1 signaling activation was observed in the intestinal porcine enterocyte cell line (IPEC-J2), and Glu activated the PI3K/Akt/mTORC1 pathway. Accordingly, PI3K inhibition partially suppressed Glu-induced mTORC1 activation. In addition, Glu increased the phosphorylation levels of IR and IRS, and inhibiting IR downregulated the IRS/PI3K/Akt pathway. Collectively, our findings first indicate that extracellular Glu activates mTORC1 via the IR/IRS/PI3K/Akt pathway and stimulates ISC expansion, providing a new perspective for regulating the growth and health of the intestinal epithelium.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas Substratos do Receptor de Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de Insulina/genética , Transdução de Sinais , Suínos
15.
J Cell Physiol ; 234(10): 19028-19038, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30937902

RESUMO

The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.


Assuntos
Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Temperatura Alta/efeitos adversos , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Transdução de Sinais/fisiologia , Suínos , Ubiquitina/metabolismo
16.
Toxicol Lett ; 305: 19-31, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690062

RESUMO

The intake of food containing deoxynivalenol frequently causes damage to the intestine, the renewal of which is driven by intestinal stem cells (ISCs). Nevertheless, the toxicity of deoxynivalenol on ISCs and its underlying mechanisms remain to be elucidated. As pigs are the most sensitive animals to deoxynivalenol, we used piglets for investigation in this study. Here, we show that intestinal epithelial cell activity, B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi1) protein level, and Wnt/ß-catenin pathway activity were suppressed with acute expose to deoxynivalenol. We further established a novel system for porcine crypt isolation and ex vivo cultivation. Crypts and crypt cells expanded and budded with typical enteroid morphologies under this system. Our results show that both acute in vivo and in vitro administration of deoxynivalenol significantly decreased enteroid activity. Simultaneously, protein levels of ß-catenin and leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) in enteroids were reduced by deoxynivalenol exposure. In conclusion, we established a reliable culture system for porcine enteroids and demonstrated for the first time that the activity of ISCs and the Wnt/ß-catenin pathway is sensitively suppressed by acute deoxynivalenol exposure.


Assuntos
Jejuno/efeitos dos fármacos , Suínos , Tricotecenos/toxicidade , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas Wnt/genética , beta Catenina/genética
17.
Int J Mol Sci ; 19(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601474

RESUMO

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) are markers of fast-cycling and quiescent intestinal stem cells, respectively. To determine the functions of these proteins in large animals, we investigated their effects on the proliferation of intestinal epithelial cells from pigs. Our results indicated that LGR5 and BMI1 are highly conserved proteins and that the pig proteins have greater homology with the human proteins than do mouse proteins. Overexpression of either LGR5 or BMI1 promoted cell proliferation and WNT/ß-catenin signaling in pig intestinal epithelial cells (IPEC-J2). Moreover, the activation of WNT/ß-catenin signaling by recombinant human WNT3A protein increased cell proliferation and LGR5 and BMI1 protein levels. Conversely, inhibition of WNT/ß-catenin signaling using XAV939 reduced cell proliferation and LGR5 and BMI1 protein levels. This is the first report that LGR5 and BMI1 can increase proliferation of pig intestinal epithelial cells by activating WNT/ß-catenin signaling.


Assuntos
Proliferação de Células/fisiologia , Complexo Repressor Polycomb 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Intestinos/citologia , Complexo Repressor Polycomb 1/genética , Receptores Acoplados a Proteínas G/genética , Suínos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
18.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156556

RESUMO

Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/ß-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/ß-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/ß-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/ß-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/ß-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/ß-catenin signaling pathways.


Assuntos
Fator de Transcrição CDX2/genética , Células Epiteliais/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Via de Sinalização Wnt , Animais , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos com 3 Anéis/farmacologia , Sirolimo/farmacologia , Suínos , Via de Sinalização Wnt/efeitos dos fármacos
19.
Int J Mol Sci ; 17(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834851

RESUMO

The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.


Assuntos
Regulação da Expressão Gênica , Hormônio do Crescimento/genética , Íntrons , Receptores de Glucocorticoides/genética , Elementos de Resposta , Somatotrofos/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Galinhas , Éxons , Glucocorticoides/farmacologia , Hormônio do Crescimento/metabolismo , Humanos , Fases de Leitura Aberta , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Hipófise/patologia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Ratos , Receptores de Glucocorticoides/metabolismo , Somatotrofos/efeitos dos fármacos , Somatotrofos/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , Transgenes
20.
Oncotarget ; 7(25): 38681-38692, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27231847

RESUMO

Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation.


Assuntos
Células Epiteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Mucosa Intestinal/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Transportador 3 de Aminoácido Excitatório/biossíntese , Feminino , Humanos , Intestinos/citologia , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...