Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929400

RESUMO

A 60 day feeding trial was conducted to evaluate the impacts of dietary carbohydrates with different complexities and configurations on the growth, plasma parameters, apparent digestibility, intestinal microbiota, glucose, and lipid metabolism of soft-shelled turtles (Pelodiscus sinensis). Four experimental diets were formulated by adding 170 g/kg glucose, fructose, α-starch, or cellulose, respectively. A total of 280 turtles (initial body weight 5.11 ± 0.21 g) were distributed into 28 tanks and were fed twice daily. The results showed that the best growth performance and apparent digestibility was observed in the α-starch group, followed by the glucose, fructose, and cellulose groups (p < 0.05). Monosaccharides (glucose and fructose) significantly enhanced the postprandial plasma glucose levels and hepatosomatic index compared to polysaccharides, due to the un-inhibited gluconeogenesis (p < 0.05). Starch significantly up-regulated the expression of the genes involved in glycolysis, pentose phosphate pathway, lipid anabolism and catabolism, and the transcriptional regulation factors of glycolipid metabolism (srebp and chrebp) (p < 0.05), resulting in higher plasma triglyceride levels and lipid contents in the liver and the whole body. The fructose group exhibited a lower lipid deposition compared with the glucose group, mainly by inhibiting the expression of srebp and chrebp. Cellulose enhanced the proportion of opportunistic pathogenic bacteria. In conclusion, P. sinensis utilized α-starch better than glucose, fructose, and cellulose.

2.
Animals (Basel) ; 12(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203193

RESUMO

A 16-day rearing trial was performed to investigate the influence of two supplemental levels (5% and 10%) of six dietary fat sources (linseed oil, peanut oil, coconut oil, soybean oil, lard oil and fish oil) on the growth, development and nutrient composition of black solider fly larvae. Our results demonstrated that the pre-pupa rate of larvae was linearly influenced by dietary C18:0, C18:3n-3 and C18:2n-6 content (pre-pupa rate = 0.927 × C18:0 content + 0.301 × C18:3n-3 content-0.258 × C18:2n-6 content p < 0.001)), while final body weight was linearly influenced by that of C16:0 (final body weight = 0.758 × C16:0 content, p = 0.004). Larval nutrient composition was significantly affected by dietary fat sources and levels, with crude protein, fat and ash content of larvae varying between 52.0 and 57.5, 15.0 and 23.8, and 5.6 and 7.2% dry matter. A higher level of C12:0 (17.4-28.5%), C14:0 (3.9-8.0%) and C16:1n-9 (1.3-4.3%) was determined in larvae fed the diets containing little of them. In comparison, C16:0, C18:1n-9, C18:2n-6 and C18:3n-3 proportions in larvae were linearly related with those in diets, with the slope of the linear equations varying from 0.39 to 0.60. It can be concluded that sufficient C16:0, C18:0 and C18:3n-3 supply is beneficial for larvae growth. Larvae could produce and retain C12:0, C14:0, and C16:1n-9 in vivo, but C16:0, C18:1n-9, C18:2n-6 and C18:3n-3 could only be partly incorporated from diets and the process may be enhanced by a higher amount of dietary fat. Based on the above observation, an accurately calculated amount of black soldier fly larvae could be formulated into aquafeed as the main source of saturated fatty acids and partial source of mono-unsaturated and poly-unsaturated fatty acids to save fish oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...