Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Sci China Life Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38679669

RESUMO

Inbreeding depression refers to the reduced performance arising from increased homozygosity, a phenomenon that is the reverse of heterosis and exists among plants and animals. As a natural self-pollinated crop with strong heterosis, the mechanism of inbreeding depression in rice is largely unknown. To understand the genetic basis of inbreeding depression, we constructed a successive inbreeding population from the F2 to F4 generation and observed inbreeding depression of all heterotic traits in the progeny along with the decay of heterozygosity in each generation. The expected depression effect was largely explained by 13 QTLs showing dominant effects for spikelets per panicle, 11 for primary branches, and 12 for secondary branches, and these loci constitute the main correlation between heterosis and inbreeding depression. However, the genetic basis of inbreeding depression is also distinct from that of heterosis, such that a biased transmission ratio of alleles for QTLs with either dominant or additive effects in four segregation distortion regions would result in minor effects in expected depression. Noticeably, two-locus interactions may change the extent and direction of the depression effects of the target loci, and overall interactions would promote inbreeding depression among generations. Using an F2:3 variation population, the actual performance of the loci showing expected depression was evaluated considering the heterozygosity decay in the background after inbreeding. We found inconsistent or various degrees of background depression from the F2 to F3 generation assuming different genotypes of the target locus, which may affect the actual depression effect of the locus due to epistasis. The results suggest that the genetic architecture of inbreeding depression and heterosis is closely linked but also differs in their intrinsic mechanisms, which expand our understanding of the whole-genome architecture of inbreeding depression.

2.
Front Genet ; 15: 1366917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482385

RESUMO

Mapping genetic variations to phenotypic variations poses a significant challenge, as mutations often combine unexpectedly, diverging from assumed additive effects even in the same environment. These interactions are known as epistasis or genetic interactions. Sign epistasis, as a specific type of epistasis, involves a complete reversal of mutation effects within altered genetic backgrounds, presenting a substantial hurdle to phenotype prediction. Despite its importance, there is a limited systematic overview of the mechanistic causes of sign epistasis. This review explores the mechanistic causes, highlighting its occurrence in signalling cascades, peaked fitness landscapes, and physical interactions. Moving beyond theoretical discussions, we delve into the practical applications of sign epistasis in agriculture, evolution, and antibiotic resistance. In conclusion, this review aims to enhance the comprehension of sign epistasis and molecular dynamics, anticipating future endeavours in systematic biology engineering that leverage the knowledge of sign epistasis.

3.
Mol Med ; 30(1): 9, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216914

RESUMO

BACKGROUND: Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism. METHODS: Bioinformatics tools were employed to predict the target genes of KDM5C in CRC. The expression levels of KDM5C and prefoldin subunit 5 (PFDN5) in CRC cells were determined by RT-qPCR and western blot assays. The interaction between KDM5C, H3K4me3, and PFDN5 was validated by chromatin immunoprecipitation. Expression and prognostic values of KDM5C and PFDN5 in CRC were analyzed in a cohort of 72 patients. The function of KDM5C/PFDN5 in c-Myc signal transduction was analyzed by luciferase assay. Silencing of KDM5C and PFDN5 was induced in CRC cell lines to analyze the cell malignant phenotype in vitro and tumorigenic activity in nude mice. RESULTS: KDM5C exhibited high expression, while PFDN5 displayed low expression in CRC cells and clinical CRC samples. High KDM5C levels correlated with poor survival and unfavorable clinical presentation, whereas elevated PFDN5 correlated with improved patient outcomes. KDM5C mediated demethylation of H3K4me3 on the PFDN5 promoter, suppressing its transcription and thereby enhancing the transcriptional activity of c-Myc. KDM5C knockdown in CRC cells suppressed cell proliferation, migration and invasion, epithelial-mesenchymal transition, and tumorigenic activity while increasing autophagy and apoptosis rates. However, the malignant behavior of cells was restored by the further silencing of PFDN5. CONCLUSION: This study demonstrates that KDM5C inhibits PFDN5 transcription, thereby activating c-Myc signal transduction and promoting CRC progression.


Assuntos
Neoplasias Colorretais , Lisina , Chaperonas Moleculares , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Lisina/genética , Lisina/metabolismo , Camundongos Nus , Processos Neoplásicos , Transdução de Sinais
4.
Nat Commun ; 14(1): 5551, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689712

RESUMO

An important challenge in genetics, evolution and biotechnology is to understand and predict how mutations combine to alter phenotypes, including molecular activities, fitness and disease. In diploids, mutations in a gene can combine on the same chromosome or on different chromosomes as a "heteroallelic combination". However, a direct comparison of the extent, sign, and stability of the genetic interactions between variants within and between alleles is lacking. Here we use thermodynamic models of protein folding and ligand-binding to show that interactions between mutations within and between alleles are expected in even very simple biophysical systems. Protein folding alone generates within-allele interactions and a single molecular interaction is sufficient to cause between-allele interactions and dominance. These interactions change differently, quantitatively and qualitatively as a system becomes more complex. Altering the concentration of a ligand can, for example, switch alleles from dominant to recessive. Our results show that intra-molecular epistasis and dominance should be widely expected in even the simplest biological systems but also reinforce the view that they are plastic system properties and so a formidable challenge to predict. Accurate prediction of both intra-molecular epistasis and dominance will require either detailed mechanistic understanding and experimental parameterization or brute-force measurement and learning.


Assuntos
Epistasia Genética , Dobramento de Proteína , Alelos , Ligantes , Biofísica
5.
Natl Sci Rev ; 10(9): nwad210, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37621414

RESUMO

Male sterility in plants provides valuable breeding tools in germplasm innovation and hybrid crop production. However, genetic resources for dominant genic male sterility, which hold great promise to facilitate breeding processes, are extremely rare in natural germplasm. Here we characterized the Sanming Dominant Genic Male Sterility in rice and identified the gene SDGMS using a map-based cloning approach. We found that spontaneous movement of a 1978-bp long terminal repeat (LTR) retrotransposon into the promoter region of the SDGMS gene activates its expression in anther tapetum, which causes abnormal programmed cell death of tapetal cells resulting in dominant male sterility. SDGMS encodes a ribosome inactivating protein showing N-glycosidase activity. The activation of SDGMS triggers transcription reprogramming of genes responsive to biotic stress leading to a hypersensitive response which causes sterility. The results demonstrate that an ectopic gene activation by transposon movement can give birth to a novel trait which enriches phenotypic diversity with practical utility.

6.
Nat Genet ; 55(8): 1381-1389, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500729

RESUMO

One-step and two-step pathways are proposed to synthesize cytokinin in plants. The one-step pathway is mediated by LONELY GUY (LOG) proteins. However, the enzyme for the two-step pathway remains to be identified. Here, we show that quantitative trait locus GY3 may boost grain yield by more than 20% through manipulating a two-step pathway. Locus GY3 encodes a LOG protein that acts as a 5'-ribonucleotide phosphohydrolase by excessively consuming the cytokinin precursors, which contrasts with the activity of canonical LOG members as phosphoribohydrolases in a one-step pathway. The residue S41 of GY3 is crucial for the dephosphorylation of iPRMP to produce iPR. A solo-LTR insertion within the promoter of GY3 suppressed its expression and resulted in a higher content of active cytokinins in young panicles. Introgression of GY302428 increased grain yield per plot by 7.4% to 16.3% in all investigated indica backgrounds, which demonstrates the great value of GY302428 in indica rice production.


Assuntos
Citocininas , Oryza , Citocininas/genética , Citocininas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Animal Model Exp Med ; 6(1): 3-9, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36872303

RESUMO

ß-Amyloid (Aß) is a specific pathological hallmark of Alzheimer's disease (AD). Because of its neurotoxicity, AD patients exhibit multiple brain dysfunctions. Disease-modifying therapy (DMT) is the central concept in the development of AD therapeutics today, and most DMT drugs that are currently in clinical trials are anti-Aß drugs, such as aducanumab and lecanemab. Therefore, understanding Aß's neurotoxic mechanism is crucial for Aß-targeted drug development. Despite its total length of only a few dozen amino acids, Aß is incredibly diverse. In addition to the well-known Aß1-42 , N-terminally truncated, glutaminyl cyclase (QC) catalyzed, and pyroglutamate-modified Aß (pEAß) is also highly amyloidogenic and far more cytotoxic. The extracellular monomeric Aßx-42 (x = 1-11) initiates the aggregation to form fibrils and plaques and causes many abnormal cellular responses through cell membrane receptors and receptor-coupled signal pathways. These signal cascades further influence many cellular metabolism-related processes, such as gene expression, cell cycle, and cell fate, and ultimately cause severe neural cell damage. However, endogenous cellular anti-Aß defense processes always accompany the Aß-induced microenvironment alterations. Aß-cleaving endopeptidases, Aß-degrading ubiquitin-proteasome system (UPS), and Aß-engulfing glial cell immune responses are all essential self-defense mechanisms that we can leverage to develop new drugs. This review discusses some of the most recent advances in understanding Aß-centric AD mechanisms and suggests prospects for promising anti-Aß strategies.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Humanos , Peptídeos beta-Amiloides , Membrana Celular , Citoplasma
8.
Clin Exp Pharmacol Physiol ; 50(7): 561-572, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946190

RESUMO

Aerobic glycolysis is critical for the energy metabolism of cancer cells. This study focuses on the regulation of forkhead box A2 (FOXA2) on pyruvate kinase M2 (PKM2) and their effects on the glycolytic activity and malignant phenotype of thyroid carcinoma (THCA) cells. By analysing four Gene Expression Omnibus datasets and querying bioinformatics systems, we obtained FOXA2 as a poorly expressed transcription factor in THCA. Later, we validated decreased mRNA and protein levels of FOXA2 in THCA cells by quantitative polymerase chain reaction and western blot assays. FOXA2 upregulation in THCA cells suppressed the glucose uptake and lactate production, and it reduced the extracellular acidification rate, but increased the oxygen consumption rate of cells. Meanwhile, the FOXA2 overexpression blocked the proliferation and mobility, and the tumourigenic activity of cancer cells. The chromatin immunoprecipitation and luciferase assays showed that FOXA2 bound to PKM2 promoter and suppressed the transcription of PKM2, which was highly expressed in THCA cells. Further upregulation of PKM2 elevated the ß-catenin, c-Myc and cyclin D1 levels and restored the glycolytic activity as well as the malignant properties of cancer cells. Collectively, this work reveals that FOXA2 suppresses aerobic glycolysis and progression of THCA by blocking PKM2 transcription and inactivating the Wnt/ß-catenin pathway.


Assuntos
Neoplasias da Glândula Tireoide , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Regulação para Cima , Neoplasias da Glândula Tireoide/genética , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
9.
Front Genet ; 14: 1087267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713072

RESUMO

Unveiling how genetic variations lead to phenotypic variations is one of the key questions in evolutionary biology, genetics, and biomedical research. Deep mutational scanning (DMS) technology has allowed the mapping of tens of thousands of genetic variations to phenotypic variations efficiently and economically. Since its first systematic introduction about a decade ago, we have witnessed the use of deep mutational scanning in many research areas leading to scientific breakthroughs. Also, the methods in each step of deep mutational scanning have become much more versatile thanks to the oligo-synthesizing technology, high-throughput phenotyping methods and deep sequencing technology. However, each specific possible step of deep mutational scanning has its pros and cons, and some limitations still await further technological development. Here, we discuss recent scientific accomplishments achieved through the deep mutational scanning and describe widely used methods in each step of deep mutational scanning. We also compare these different methods and analyze their advantages and disadvantages, providing insight into how to design a deep mutational scanning study that best suits the aims of the readers' projects.

10.
Appl Biochem Biotechnol ; 195(10): 6050-6067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36418715

RESUMO

Drug resistance is a major obstacle leading to treating failure and poor outcome in gastric cancer (GC). This study explores the interaction between SMAD family member 1 (SMAD1) and Yes1-associated transcriptional regulator (YAP1) and their roles in cisplatin (DDP) resistance in GC. Transcriptome analysis predicted that SMAD1 is highly expressed in DDP-resistant cells. Elevated SMAD1 expression was detected in GC tissue and cells, especially in DDP-resistant cells (MKN-45/DDP and AGS/DDP). SMAD1 downregulation in cells decreased 50% inhibition value of DDP, reduced proliferation, migration, and invasion, and promoted cell cycle arrest and apoptosis. A protein-protein interaction network suggested a possible SMAD1 and YAP1 interaction in GC. The SMAD1 and YAP1 interaction was validated by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), and luciferase assays. SMAD1 bound to YAP1 and activated its transcription. SMAD1 formed complexes with YAP1 in nucleus, and YAP1 upregulation enhanced SMAD1 activity as well. Upregulation of YAP1 restored the malignant behaviors of GC cells suppressed by SMAD1 silencing. In vivo, SMAD1 silencing suppressed growth and DDP resistance of xenograft tumors in nude mice, and this suppression was blocked by YAP1 overexpression again. In conclusion, this study demonstrates that SMAD1 can interact with YAP1 to enhance the DDP resistance of GC cells.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Gástricas/metabolismo , Camundongos Nus , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/metabolismo
11.
Front Oncol ; 12: 1021453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457490

RESUMO

Objectives: To investigate the short-term efficacy and radiotoxicity 3.543of chronoradiotherapy in patients with cervical cancer. We also examined the overall symptom score and quality of life (QOL) of patients who underwent morning radiotherapy and evening radiotherapy. Methods: We conducted a multicenter randomized controlled trial to compare the effects of morning radiotherapy (9:00-11:00 AM) with evening radiotherapy (7:00-9:00 PM) in cervical cancer patients receiving radiotherapy. From November 2021 to June 2022, 114 cervical cancer patients admitted to eight cancer center hospitals in Tianjin, Chongqing, Hubei, Shanxi, Shandong, Shaanxi, Hebei, and Cangzhou were randomly divided into the morning radiotherapy group (MG; N = 61) and the evening radiotherapy group (EG; N = 53). The short-term efficacy of radiotherapy on cervical cancer patients at different time points and the occurrence of radiotoxicity were explored after patients had undergone radiotherapy. Results: The total effective response (partial remission [PR] + complete remission [CR]) rate was similar across the two groups (93.5% vs. 96.3%, p > 0.05). However, the incidence of bone marrow suppression and intestinal reaction in the two groups were significantly different (p < 0.05). The patients in the MG had significantly higher Anderson symptom scores than patients in the EG (21.64 ± 7.916 vs. 18.53 ± 4.098, p < 0.05). In terms of physical activity, functional status, and overall QOL, the MG had significantly lower scores than the EG (p < 0.05). No other measures showed a significant difference between the groups. Conclusion: The radiotherapy effect of the MG was consistent with that of the EG. The incidence of radiation enteritis and radiation diarrhea in the MG was significantly higher than that in the EG; however, bone marrow suppression and blood toxicity in the EG were more serious than in the MG. Because of the small sample size of the study, we only examined the short-term efficacy of radiotherapy. Therefore, further clinical trials are needed to verify the efficacy and side effects of chronoradiotherapy. Clinical Trial Registration: http://www.chictr.org.cn/searchproj.aspx, Registration Number: ChiCTR2100047140.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36193123

RESUMO

Purpose: To assess the association between intestinal venous blood (IVB) circulating tumor cells (CTCs) and clinicopathological parameters in stage I-III colorectal cancer (CRC) patients. Methods: Participants were retrospectively retrieved, who were admitted to our hospital or took annual physical exams between December 1, 2015 and December 31, 2018. A negative enrichment-immunofluorescence in situ hybridization (NE-imFISH) technique was used to isolate and identify CTCs. Receiver operating characteristic (ROC) curves and Youden index values were used to determine the critical CTC cutoff value for the diagnosis of CRC. Kaplan-Meier and log-rank methods were used to conduct survival analyses, and multivariate Cox regression analyses were employed for multivariate corrections to comprehensively evaluate the value of CTCs in the diagnosis of CRC. Relationships between IVB CTCs, clinicopathological parameters, and prognosis were then analyzed based upon patient postoperative follow-up data. Results: In total, we retrieved 282 patients including 48 healthy controls, 72 patients with benign colorectal tumors, and 162 CRC patients. CRC patients exhibited significantly higher numbers of CTCs relative to control patients or those with benign disease. CTC numbers in CRC patient peripheral blood (PB) and IVB were closely associated with tumor node metastasis (TNM) staging (P < 0.01), carbohydrate antigen-125 (CA-125) levels (P < 0.001), and KRAS (Kirsten rat sarcoma virus oncogene) mutation status (P < 0.001). The disease-free survival (DFS) of patients in the CTC-negative group was significantly longer than that of patients in the CTC-positive group (24.60 ± 13.31 months vs. 18.70 ± 10.19 months, P < 0.05), with the same being true with respect to their overall survival (OS) (30.60 ± 12.44 months vs. 35.25 ± 11.57 months, P < 0.05). A multivariate analysis revealed that the detection ≥2 CTCs/3.2 ml was independently associated with poorer DFS and OS. CTC counts were independently predictive of CRC patients TNM staging, CA-125, and KRAS mutation status in both univariate and multivariate Cox proportional hazards regression analyses. Conclusion: CTCs are valuable biomarkers that can be monitored to predict CRC patient disease progression.

13.
Plant J ; 112(1): 68-83, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912411

RESUMO

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.


Assuntos
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
14.
Proc Natl Acad Sci U S A ; 119(34): e2208759119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969741

RESUMO

Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.


Assuntos
Oryza , Infertilidade das Plantas , Hibridização Genética , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo
15.
Theor Appl Genet ; 135(10): 3417-3431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35941236

RESUMO

KEY MESSAGE: We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.


Assuntos
Oryza , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955848

RESUMO

Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.


Assuntos
Oryza , Alelos , Grão Comestível/genética , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas
17.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166487, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840042

RESUMO

Clinically, hypoxia is a major risk factor for long QT syndrome (LQTS), which is associated with many diseases, such as myocardial ischemia. LQTS can be caused by the deficiency of hERG, a potassium ion channel that plays a key role in cardiac repolarization. Modifications such as acetylation of histones or non-histone proteins can affect the protein expression. In the present study, we explored the mechanism underlying hypoxia-induced LQTS and a potential reversal strategy. Experiments were performed under hypoxia to determine transcriptional and post-transcriptional expression changes. We used real-time PCR, chromatin immunoprecipitation assay, and western blotting to determine the histones acetylation in the hERG gene and the mechanism. Molecular docking, western blotting, IP, and patch -clamp assay were performed to determine the acetylation and ubiquitination levels of hERG protein and the mechanism. hERG mRNA and protein expression were found to decrease under hypoxia. The histone deacetylation level increased under hypoxia at both H3K27 and H4 of the hERG gene. HDAC1 and HDAC2 are the key enzymes for the mechanism. HDAC6 directly interacts with hERG. The acetylation level of hERG decreased and the ubiquitination level of hERG increased under hypoxia. The inhibitors of HDAC1, HDAC2, and HDAC6 could reverse the reduction of hERG mRNA and hERG protein expression under hypoxia. In conclusion, deacetylation of hERG gene-associated histones and hERG protein might be the mechanisms for LQTS in patients with hypoxia, and the inhibition of HDAC1, HDAC2, and HDAC6 might be a promising reversal strategy for reducing hERG expression under different pathological conditions.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Hipóxia , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/genética , Simulação de Acoplamento Molecular , RNA Mensageiro
18.
Theor Appl Genet ; 135(8): 2675-2685, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35715647

RESUMO

KEY MESSAGE: qFC6, a major quantitative trait locus for rice crude fat content, was fine mapped to be identical with Wx. FC6 negatively regulates crude fat content and rice quality. Starch, protein and lipids are the three major components in rice endosperm. The lipids content in rice influences both storage and quality. In this study, we identified a quantitative trait locus (QTL), qFC6, for crude fat (free lipids) content through association analysis and linkage analysis. Gene-based association analysis revealed that LOC_Os06g04200, also known as Wx, was the candidate gene for qFC6. Complementation and knockout transgenic lines revealed that Wx negatively regulates crude fat content. Lipid composition and content analysis by gas chromatography and taste evaluation analysis showed that FC6 positively influenced bound lipids content and negatively affected both free lipids content and taste. Besides, higher free lipids content rice varieties exhibit more lustrous appearance after cooking and by adding extra oil during cooking could improve rice luster and taste score, indicating that higher free lipids content may make rice more lustrous and delicious. Together, we cloned a QTL coordinating rice crude fat content and eating quality and assisted in uncovering the genetic basis of rice lipid content and in the improvement of rice eating quality.


Assuntos
Oryza , Amilose/química , Ligação Genética , Lipídeos , Oryza/metabolismo , Locos de Características Quantitativas , Amido/química
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121396, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636135

RESUMO

A novel cationic iridium(III) complex [(ppy)2Ir(bPCPC)]PF6 (ppy: 2-phenylpyridine; bPCPC: 2-([2,2'-bipyridine]-4-carbonyl)-N-phenylhydrazinecarbothioamide) containing a thiosemicarbazide unit was designed and synthesized. The thiosemicarbazide unit was a sensitive functional group to Hg2+, when it reacted with Hg2+, it was desulphurized and thus led to the formation of 1,3,4-oxadiazole, [(ppy)2Ir(bPCPC)]PF6 resultantly was used as a "turn-on" chemodosimeter for luminescent detection of Hg2+ in DMF/PBS buffer solution at pH = 7-11. Except for Ag+, recognition capability of [(ppy)2Ir(bPCPC)]PF6 to Hg2+ was not interfered by other common metal ions (Co2+, Li+, Zn2+, Pb2+, K+, Al3+, Na+, Mn2+, Cu2+, Fe2+, Fe3+, Cr3+, Ba2+, Mg2+, Ni2+ and Ca2+). The detection limit was 1.83 × 10-9 mol∙L-1 (0.37 ppb), which indicated the complex was a highly sensitive chemiluminescent detection reagent of Hg2+.


Assuntos
Irídio , Mercúrio , Cátions , Semicarbazidas
20.
New Phytol ; 234(4): 1315-1331, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35244216

RESUMO

High temperatures cause huge yield losses in rice. Heat-shock factors (Hsfs) are key transcription factors which regulate the expression of heat stress-responsive genes, but natural variation in and functional characterization of Hsfs have seldom been reported. A significant heat response locus was detected via a genome-wide association study (GWAS) using green leaf area as an indicative trait. A miniature inverted-repeat transposable element (MITE) in the promoter of a candidate gene, HTG3 (heat-tolerance gene on chromosome 3), was found to be significantly associated with heat-induced expression of HTG3 and heat tolerance (HT). The MITE-absent variant has been selected in heat-prone rice-growing regions. HTG3a is an alternatively spliced isoform encoding a functional Hsf, and experiments using overexpression and knockout rice lines showed that HTG3a positively regulates HT at both vegetative and reproductive stages. The HTG3-regulated genes were enriched for heat shock proteins and jasmonic acid signaling. Two heat-responsive JASMONATE ZIM-DOMAIN (JAZ) genes were confirmed to be directly upregulated by HTG3a, and one of them, OsJAZ9, positively regulates HT. We conclude that HTG3 plays an important role in HT through the regulation of JAZs and other heat-responsive genes. The MITE-absent allele may be valuable for HT breeding in rice.


Assuntos
Oryza , Termotolerância , Ciclopentanos , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Oxilipinas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Termotolerância/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...