Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38866720

RESUMO

Many R packages provide statistical approaches for elucidating the diversity of soil microbes, yet they still struggle to visualize microbial traits on a geographical map. This creates challenges in interpreting microbial biogeography on a regional scale, especially when the spatial scale is large or the distribution of sampling sites is uneven. Here, we developed a lightweight, flexible, and user-friendly R package called microgeo. This package integrates many functions involved in reading, manipulating, and visualizing geographical boundary data; downloading spatial datasets; and calculating microbial traits and rendering them onto a geographical map using grid-based visualization, spatial interpolation, or machine learning. Using this R package, users can visualize any trait calculated by microgeo or other tools on a map and can analyze microbiome data in conjunction with metadata derived from a geographical map. In contrast to other R packages that statistically analyze microbiome data, microgeo provides more-intuitive approaches in illustrating the biogeography of soil microbes on a large geographical scale, serving as an important supplement to statistically driven comparisons and facilitating the biogeographic analysis of publicly accessible microbiome data at a large spatial scale in a more convenient and efficient manner. The microgeo R package can be installed from the Gitee (https://gitee.com/bioape/microgeo) and GitHub (https://github.com/ChaonanLi/microgeo) repositories. Detailed tutorials for the microgeo R package are available at https://chaonanli.github.io/microgeo.


Assuntos
Microbiota , Software , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Filogeografia
2.
Mol Ecol ; 33(13): e17386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751195

RESUMO

One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community ß-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar ß-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating ß-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired ß-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of ß-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community ß-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community ß-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on ß-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating ß-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.


Assuntos
Bactérias , Biodiversidade , Clima Desértico , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Fungos/genética , Fungos/classificação , China , Microbiota/genética , Solo/química
3.
J Hazard Mater ; 471: 134252, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657507

RESUMO

The microbiome is a key source of antibiotic resistance genes (ARGs), significantly influenced by diet, which highlights the interconnectedness between diet, gut microbiome, and ARGs. Currently, our understanding is limited on the co-occurrence among gut microbiome, antibiotic resistome in the captive giant panda and the perturbation of dietary uptake, especially for the composition and forms in dietary nutrition. Here, a qPCR array with 384 primer sets and 16 S rRNA gene amplicon sequencing were used to characterize the antibiotic resistome and microbiomes in panda feces, dietary bamboo, and soil around the habitat. Diet nutrients containing organic and mineral substances in soluble and insoluble forms were also quantified. Organic and mineral components in water-unextractable fractions were 7.5 to 139 and 637 to 8695 times higher than those in water-extractable portions in bamboo and feces, respectively, while the latter contributed more to the variation (67.5 %) of gut microbiota. Streptococcus, Prevotellaceae, and Bacteroides were the dominant genera in giant pandas. The ARG patterns in panda guts showed higher diversity in old individuals but higher abundance in young ones, driven directly by the bacterial community change and mobile genetic element mediation and indirectly by dietary intervention. Our results suggest that dietary nutrition mainly accounts for the shift of gut microbiota, while bacterial community and mobile genetic elements influenced the variation of gut antibiotic resistome.


Assuntos
Antibacterianos , Dieta , Fezes , Microbioma Gastrointestinal , Ursidae , Animais , Ursidae/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Farmacorresistência Bacteriana/genética
4.
Environ Microbiol ; 26(3): e16601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454574

RESUMO

Thaumarchaeota are predominant in oligotrophic habitats such as deserts and arid soils, but their adaptations to these arid conditions are not well understood. In this study, we assembled 23 Thaumarchaeota genomes from arid and semi-arid soils collected from the Inner Mongolia Steppe and the Qinghai-Tibet Plateau. Using a comparative genomics approach, integrated with 614 Thaumarchaeota genomes from public databases, we identified the traits and evolutionary forces that contribute to their adaptations to aridity. Our results showed that the newly assembled genomes represent an early diverging group within the lineage of ammonia-oxidising Thaumarchaeota. While the genomic functions previously identified in arid soil lineages were conserved across terrestrial, shallow-ocean and deep-ocean lineages, several traits likely contribute to Thaumarchaeota's adaptation to aridity. These include chlorite dismutase, arsenate reductase, V-type ATPase and genes dealing with oxidative stresses. The acquisition and loss of traits at the last common ancestor of arid soil lineages may have facilitated the specialisation of Thaumarchaeota in arid soils. Additionally, the acquisition of unique adaptive traits, such as a urea transporter, Ca2+ :H+ antiporter, mannosyl-3-phosphoglycerate synthase and phosphatase, DNA end-binding protein Ku and phage shock protein A, further distinguishes arid soil Thaumarchaeota. This study provides evidence for the adaptations of Thaumarchaeota to arid soil, enhancing our understanding of the nitrogen and carbon cycling driven by Thaumarchaeota in drylands.


Assuntos
Amônia , Solo , Filogenia , Amônia/metabolismo , Microbiologia do Solo , Oxirredução , Archaea/genética , Archaea/metabolismo , Genômica
5.
ISME J ; 17(11): 1920-1930, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666974

RESUMO

A major challenge in managing and engineering microbial communities is determining whether and how microbial community responses to environmental alterations can be predicted and explained, especially in microorganism-driven systems. We addressed this challenge by monitoring microbial community responses to the periodic addition of the same feedstock throughout anaerobic digestion, a typical microorganism-driven system where microorganisms degrade and transform the feedstock. The immediate and delayed response consortia were assemblages of microorganisms whose abundances significantly increased on the first or third day after feedstock addition. The immediate response consortia were more predictable than the delayed response consortia and showed a reproducible and predictable order-level composition across multiple feedstock additions. These results stood in both present (16 S rRNA gene) and potentially active (16 S rRNA) microbial communities and in different feedstocks with different biodegradability and were validated by simulation modeling. Despite substantial species variability, the immediate response consortia aligned well with the reproducible CH4 production, which was attributed to the conservation of expressed functions by the response consortia throughout anaerobic digestion, based on metatranscriptomic data analyses. The high species variability might be attributed to intraspecific competition and contribute to biodiversity maintenance and functional redundancy. Our results demonstrate reproducible and predictable microbial community responses and their importance in stabilizing system functions.


Assuntos
Microbiota , Anaerobiose , Biodiversidade , RNA Ribossômico 16S/genética , RNA Ribossômico , Reatores Biológicos , Consórcios Microbianos/genética
6.
J Exp Bot ; 74(8): 2740-2753, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807675

RESUMO

The root-associated microbiomes play important roles in plant growth. However, it is largely unknown how wheat variety evolutionary relatedness shapes each subcommunity in the root microbiome and, in turn, how these microbes affect wheat yield and quality. Here we studied the prokaryotic communities associated with the rhizosphere and root endosphere in 95 wheat varieties at regreening and heading stages. The results indicated that the less diverse but abundant core prokaryotic taxa occurred among all varieties. Among these core taxa, we identified 49 and 108 heritable amplicon sequence variants, whose variations in relative abundances across the root endosphere and rhizosphere samples were significantly affected by wheat variety. The significant correlations between phylogenetic distance of wheat varieties and prokaryotic community dissimilarity were only observed in non-core and abundant subcommunities in the endosphere samples. Again, wheat yield was only significantly associated with root endosphere microbiota at the heading stage. Additionally, wheat yield could be predicted using the total abundance of 94 prokaryotic taxa as an indicator. Our results demonstrated that the prokaryotic communities in the root endosphere had higher correlations with wheat yield and quality than those in the rhizosphere; thus, managing root endosphere microbiota, especially core taxa, through agronomic practices and crop breeding, is important for promoting wheat yield and quality.


Assuntos
Microbiologia do Solo , Triticum , Triticum/genética , Filogenia , Raízes de Plantas/genética , Melhoramento Vegetal , Rizosfera
7.
J Environ Manage ; 331: 117307, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652878

RESUMO

Microorganisms in anaerobic digestion (AD) are essential for wastes/pollutants treatment and energy recovery. Due to microbial enormous diversity, developing effective perspectives to understand microbial roles therein is urgent. This study conducted AD of swine manure, used an ensemble-based network analysis to distinguish interconnected, unconnected, copresence (positively interconnected) and mutual-exclusion (negatively interconnected) microorganisms within microbial communities, and explored their importance towards AD performances, using amplicon sequencing of 16S rRNA and 16S rRNA gene. Our analyses revealed greater importance of interconnected than unconnected microorganisms towards CH4 production and AD multifunctionality, which was attributed to higher niche breadth, deterministic community assembly, community stability and phylogenetic conservatism. The diversity was higher in unconnected than interconnected microorganisms, but was not linked to AD performances. Compared to copresence microorganisms, mutual-exclusion microorganisms showed greater and equal importance towards CH4 production and AD multifunctionality, which was attributed to their roles in stabilizing microbial communities. The increased feedstock biodegradability, by replacing part of manure with fructose or apple waste, hardly affected the relative importance of interconnected versus unconnected microorganisms towards CH4 production or AD multifunctionality. Our findings develop a new framework to understand microbial roles, and have important implications in targeted manipulation of critical microorganisms in waste-treatment systems.


Assuntos
Esterco , Microbiota , Animais , Suínos , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética , Metano , Reatores Biológicos , Biocombustíveis
8.
Folia Microbiol (Praha) ; 68(4): 537-546, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36637770

RESUMO

Hibernating amphibians are suitable for the research on the adaptation of gut microbiota to long-term fasting and cold stresses. However, the previous studies mainly focus on the large or whole gut microbiota but not the small gut microbiota. To test the structural discrepancy between the small and large gut microbiota during hibernation, we performed two independent batches of 16S rRNA gene amplicon sequencing to profile the small and large gut microbiota of hibernating Asiatic toad (Bufo gargarizans) from two wild populations. Both batches of data revealed that Proteobacteria, Bacteroidetes, and Firmicutes were the three most dominant phyla in the small and large gut microbiota. Three core OTUs with 100% occurrence in all gut microbiotas were annotated as Pseudomonas. A significant structural discrepancy was detected between the small and large gut microbiota. For instance, Proteobacteria assembled in the small intestine with a higher proportion than it did in the large intestine, but Bacteroidetes and Firmicutes assembled in the large intestine with a higher proportion than they did in the small intestine. The large gut microbiota exhibited higher diversity than the small gut microbiota. Nevertheless, a severe batch effect existed in the structural analysis of the gut microbiotas. The large gut microbiota showed a better resistance to the batch effect than the small gut microbiota did. This study provides preliminary evidence that microbes assemble in the small and large intestines of amphibians with discrepant patterns during hibernation.


Assuntos
Microbioma Gastrointestinal , Hibernação , Animais , RNA Ribossômico 16S/genética , Bufonidae/genética , Bufonidae/microbiologia
9.
Microb Ecol ; 86(1): 485-496, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35842525

RESUMO

The assembly mechanisms shaping the elevational patterns of diversity and community structure in ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are not well understood. We investigated the diversities, co-occurrence network patterns, key drivers, and potential activities of AOA and AOB communities along a large altitudinal gradient. The α-diversity of the AOA communities exhibited a monotonically decreasing pattern with increasing elevation, whereas a sinusoidal pattern was observed for the AOB communities. The mean annual temperature was the single factor that most strongly influenced the α-diversity of the AOA communities; however, the interactions of plant richness, soil conductivity, and total nitrogen made comparable contributions to the α-diversity of the AOB communities. Moreover, the ß-diversities of the AOA and AOB communities were divided into two distinct clusters by elevation, i.e., low- (1800-2600 m) and high-altitude (2800-4100 m) sections. These patterns were attributed mainly to the soil pH, followed by variations in plant richness along the altitudinal gradient. In addition, the AOB communities were more important to the soil nitrification potential in the low-altitude section, whereas the AOA communities contributed more to the soil nitrification potential in the high-altitude section. Overall, this study revealed the key factors shaping the elevational patterns of ammonia-oxidizing communities and might predict the consequences of changes in ammonia-oxidizing communities.


Assuntos
Bactérias , Betaproteobacteria , Bactérias/genética , Amônia , Microbiologia do Solo , Oxirredução , Archaea/genética , Solo , Nitrificação , Filogenia
10.
J Environ Manage ; 329: 116972, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528938

RESUMO

Partial nitrification is an effective process for treating high-strength ammonium landfill leachate with low C/N ratio, for the cooperation with denitrification can save almost 40% carbon addition in biological nitrogen removal. However, high ammonia loading often causes the instability of partial nitrification process. Less carbon addition can promote the stability of partial nitrification and increase the nitrite accumulation ratio (NAR). Nevertheless, the microbial mechanisms within remain further elusive. In this study, two laboratory-scale sequencing batch reactors were constructed and operated for 125 days, which were fed with ammonia synthetic wastewater with C/N of 0.6 (CN system) and C/N of 0.0 as the control (N system). CN system performed more stably and had the highest NAR of 100%. Extracellular polymeric substances (EPS) generated from carbon source provided spatial and nutrient niches to tighten the cooperation of functional microorganisms, thus, enhanced the stability and efficiency of partial nitrification. Thauera was the dominant denitrifier in CN system. Nitrosomonas was one of the most important autotrophic ammonia oxidizing bacteria, while Paracoccus and Flavobacterium were the main heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria in CN system. The enrichment of HN-AD bacteria outcompeted nitrite oxidizing bacteria (NOB), therefore leaded to higher nitrite accumulation in CN system. The findings of this study may be conducive to increasing the understanding of the microbial collaboration mechanisms of partial nitrification, thereby provides theoretical support for the improvement of biological nitrogen removal technology.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Nitrificação , Amônia , Nitritos , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Carbono , Desnitrificação , Esgotos
11.
J Environ Manage ; 325(Pt B): 116672, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343402

RESUMO

Cement is a critical building material used in the restorations of bare cut slopes. Yet, how cement affects ecosystem's functions and their undertakers remains elusive. Here, we revealed the dosage and temporal effects of cement on plant and soil traits, extracellular enzymes, greenhouse gas fluxes and microbiome using simulation experiments. The results showed that soil pH increased with the cement content at 1st day but relatively constant values around 7 to 7.5 were detected in the flowing days. The ß-1,4-glucosidase, phenol oxidase, leucine aminopeptidase and acid phosphatase showed high activities under high cement content, and they generally increased with the cultivations except for acid phosphatase. CH4 fluxes at 16th day were less than zero, and they increased to peak around at 37th to 44th days followed by decreasing until reaching to relatively stable fluctuations around 0. Despite of decrease patterns, N2O fluxes stayed around zero across the temporal gradient except for the maximum around at 30th day in 2%, 5% and 8% cement treatment. Microbial diversity decreased with the cement content, in which there were a recovery trend for bacteria. By integrating above- and belowground ecosystem traits into a multifunctionality index, we identified a potential optimum cement content (11%). PLSPM showed that multifunctionality was affected by the shifts in soil bacterial community, enzyme activity and greenhouse gases while these components were effected by other environmental changes resulted from cement. Our results demonstrate that cement determines multifunctionality through mediating microbial community and activity, providing new insights for designing in situ experiments and ecological restoration strategies for bare cut slopes.


Assuntos
Gases de Efeito Estufa , Microbiota , Ecossistema , Microbiologia do Solo , Solo/química , Bactérias , Fosfatase Ácida
12.
Imeta ; 2(1): e71, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868345

RESUMO

The article provides a pipeline for comparing microbial co-occurrence networks based on the R microeco package and meconetcomp package. It has high flexibility and expansibility and can help users efficiently compare networks built from different groups of samples or different construction approaches.

13.
Water Res ; 226: 119307, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332298

RESUMO

Microbial life strategy, reflected by rRNA operon (rrn) copy number, determines microbial ecological roles. However, the relationship between microbial life strategy and the energy and nutrient flux in anaerobic digestion (AD) remains elusive. This study investigated microbial rrn copy number and expression ratio using amplicon sequencing of 16S rRNA gene and 16S rRNA, and monitored CH4 daily production to approximate the status of energy and nutrient flux in semi-continuous AD. A significantly positive correlation between the mean rrn copy number of microbial communities in digestate and CH4 daily production was detected in the control treatment fed swine manure. The reduced feedstock complexity, by replacing parts of swine manure with fructose or apple waste, weakened the correlation. When feedstock complexity was increased again, the correlation was strengthened again. Similar results were detected in mean rrn expression ratio of microbial communities. The responses of mean rrn copy number and expression ratio of communities to feedstock addition differed between the reduced feedstock complexity and the control treatment, as well as between in digestate and in straw. Our findings reveal a novel relationship between microbial community life strategy and the energy and nutrient flux, and the roles of feedstock characteristics therein in AD.


Assuntos
Esterco , Óperon de RNAr , Suínos , Animais , RNA Ribossômico 16S/genética , Anaerobiose , Variações do Número de Cópias de DNA , Nutrientes , Reatores Biológicos , Metano
14.
Front Microbiol ; 13: 1028838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439816

RESUMO

In the Tibetan grasslands, the distribution patterns of the microbial community structure and function along elevation gradients have attracted considerable attention due to the wide distribution of mountain slopes, but the controlling factors of these patterns are still unclear. Here we investigated the taxonomy and potential functions of soil bacteria along an elevation gradient in a Tibetan mountainous grassland in 2 years, aiming to explore the elevation patterns of the bacterial structure and function and the underlying drivers. High-throughput sequencing and environment attribute measurements were conducted to survey the bacterial and environment characters. Furthermore, PICRUSt2 for prediction of bacterial functions, iCAMP for unraveling the drivers controlling community assembly, and HMSC for variance partitioning of bacterial community composition were used. Elevation did not significantly affect the bacterial diversity but changed their composition, driven by both deterministic and stochastic processes. In addition, elevation did not significantly affect the relative importance of deterministic and stochastic processes. Soil carbon, nitrogen, and temperature were important deterministic factors in driving bacterial community structure. The genus Solirubrobacter in Actinobacteriota was identified as most elevation discriminatory. Based on these observations, the bacterial community in the Tibetan mountainous grasslands was more controlled by edaphic factors than temperature, indicating their relative stability under climate change scenarios.

15.
Bioresour Technol ; 365: 128157, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272680

RESUMO

The sudden change of ammonia loading in high-strength ammonium wastewater treatment can directly affect the system stability by altering microbial community dynamics. To maintain the system stability, the effects of ammonia shock loading on microbial community dynamics must be studied. Two sets of sequencing batch reactors were operated with 6 shock cycles (maximum volumetric loading rate of 1928 mg N/(L·d)). CN system contained both organic carbon and ammonia and N system contained only ammonia. Comparing with N system, CN system operated more stably and had higher nitrite accumulation rate. Free ammonia (FA) was the select stress for the turnover of CN microbial communities, while the N communities didn t shift much. The increase of Nitrosomonas and the appearance of heterotrophic nitrification-aerobic denitrification bacteria in CN system presented its resistance and redundancy against FA impact, while the increase of functional genes exhibited functional genes redundancy which maintained the system stability.


Assuntos
Compostos de Amônio , Nitrificação , Águas Residuárias , Amônia , Reatores Biológicos/microbiologia , Nitritos , Bactérias Aeróbias , Desnitrificação , Nitrogênio
16.
J Environ Manage ; 320: 115944, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963071

RESUMO

Animal carcass decay produces many poisonous metabolites and chemical pollutants, which pose potential ecological risks to the aquatic environment and human health. However, the effects of animal cadaver decomposition on high-risk antibiotic resistance genes (ARGs) and potential pathogens in different water types are still unknown. In this study, fifteen freshwater economic fish (Carassius auratus) corpses were put into three types of water (i.e., pond water, tap water, and domestic sewage) for a 100-day decomposition. Next generation sequencing and HT-qPCR were used to illustrate how corpse decomposition affected microbial communities and ARG profiles. Our results revealed that fish corpse degradation caused similar resistomes and microbiome in different water types. MLSB (Macrolide-Lincosamide-Streptogramin B), ß-lactamase, sulfonamide, tetracycline resistance genes and transposase genes in the experimental groups were increased. Among them, tetracycline resistance genes were enriched by 224 to 136,218-fold during the process of corpse degradation. Furthermore, high-risk ARGs (ermB, floR and dfrA1), which resist to MLSB, multidrug and sulfonamide respectively, were significantly enriched in the cadaver groups and had co-occurrence patterns with opportunistic pathogens, such as Bacteroidetes, which was more than 37 times in carcass groups than that in control groups. The study is able to draw a general conclusion that cadaver decomposition of freshwater economic fish deteriorates the aquatic environment by affecting high-risk ARGs and pathogenic microorganisms regardless of water types, which poses potential threats to human health. Therefore, timely management and treatment of animal carcasses is of great significance to the protection of water environment.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Antibacterianos/análise , Cadáver , Resistência Microbiana a Medicamentos/genética , Peixes/genética , Água Doce/análise , Humanos , Sulfonamidas , Tetraciclina , Água
17.
Front Microbiol ; 13: 950811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875528

RESUMO

Plateau pikas (Ochotona curzoniae) are high-altitude model animals and famous "ecosystem engineers" on the Qinghai-Tibet Plateau. Pika activities may accelerate the degradation of alpine meadows. Nevertheless, little is known about the responses of bacterial, fungal, and archaeal communities, and ecosystem multifunctionality to pika perturbations. To address this question, we studied the impacts of only pika disturbance and combined disturbance (pika disturbance and grazing) on ecological networks of soil microbial communities and ecosystem multifunctionality. Our results demonstrated that Proteobacteria, Ascomycota, and Crenarchaeota were dominant in bacteria, fungi, and archaea, respectively. Bacteria, fungi, and archaea were all influenced by the combined disturbance of grazing and pika. Most fungal communities became convergent, while bacterial and archaeal communities became differentiated during the succession of surface types. In particular, the bacterial and fungal networks were less stable than archaeal networks. In response to the interference, cross-domain cooperation between bacterial and fungal communities increased, while competitive interactions between bacterial and archaeal communities increased. Pika disturbance at high intensity significantly reduced the ecosystem multifunctionality. However, the mixed effects of grazing and pika weakened such influences. This study revealed how pika activities affected microbial networks and ecosystem multifunctionality. These results provide insights to designing reasonable ecological management strategies for alpine grassland ecosystems.

18.
J Hazard Mater ; 438: 129441, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777143

RESUMO

Anaerobic digestion (AD) is widely used to treat livestock manure that harbors diverse pollutants (resistance genes (ARGs), metal/biocide resistance genes (MBRGs), integron-integrase genes, human pathogens and pathogen virulence factors (VFs)). However, the interplays of these pollutants and the effects of substrate complexity on pollutants in AD are elusive. This study investigated the dynamics of these pollutants and bacterial communities during AD of swine manure, by metatranscriptomic sequencing and amplicon sequencing of 16 S rRNA and 16 S rRNA gene. The pollutant profiles and bacterial communities differed across AD processes, nevertheless with consistent dominance of ARGs of multi-drugs, tetracycline, aminoglycoside and rifamycin, MBRGs of multi-biocides, multi-metals, copper and arsenic, the integron-integrase gene intI1, potential pathogens of Escherichia coli, Streptococcus gallolyticus and Clostridium perfringens, VFs involved in pathogen adherence, and bacterial phyla of Firmicutes, Bacteroidetes and Proteobacteria. Reduced substrate complexity (replacing a part of swine manure, a complex substrate, with a simple substrate, apple waste or fructose) decreased the prevalence and stochastic turnover of ARGs and MBRGs. Network analyses revealed decreased interplays among pollutants under reduced substrate complexity. Our findings provide a mechanical understanding of diverse pollutants dynamics during AD, and reveal the importance of substrate complexity in controlling prevalence and interplays of pollutants.


Assuntos
Desinfetantes , Poluentes Ambientais , Anaerobiose , Animais , Antibacterianos/farmacologia , Bactérias , Desinfetantes/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Integrases/genética , Integrases/farmacologia , Integrons/genética , Esterco/microbiologia , Prevalência , Suínos , Fatores de Virulência/genética , Fatores de Virulência/farmacologia
19.
Environ Microbiol ; 24(11): 5450-5466, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35844197

RESUMO

Anthropogenic long-term nitrogen (N) deposition may dramatically impact biocrusts due to the overarching N limitation of soil biota in deserts. Even low levels of N may reach a critical loading threshold altering biocrust constituents and function. To identify the impact of chronic and continuous low levels of N deposition on biocrusts, we created a realistic gradient mirroring anthropogenic N addition rate (2:1 NH4 + : NO3 - rates: 0.3, 0.5, 1.0, 1.5, 3 g N m-2  yr-1 ) and measured the response of bacteria and fungi within cyanobacterial-dominated biocrusts over 8 years in a temperate desert, the Gurbantunggut Desert, China. We found that once N deposition reached 1.5 g N m-2  yr-1 biocrust bacterial communities, including diazotrophs, were altered while no such tipping point existed for fungi. Above the threshold, bacterial richness was enhanced, the relative abundance of Chloroflexi, FBP and Gemmatimonadetes was elevated, and diazotrophs shifted from being dominated by Nostocaceae and Scytonemataceae (Cyanobacteria) to free-living Bradyrhizobiaceae (Alphaproteobacteria). Alternatively, the relative recovery of a few fungal species within the Lecanorales, Pleosporales and Verrucariales became either enriched or diminished due to N deposition. The chronic addition of N resulted in a dense and interconnected bacterial co-occurrence network that accentuated a functional shift from networks dominated by phototrophic species within the Nostocaceae, Xenococcaceae, Phormidiaceae and Scytonemataceae (Cyanobacteria) to ammonia-oxidizing species within the Nitrosomonadaceae (Betaproteobacteria) and nitrifying bacteria [i.e. Nitrospiraceae (Nitrospirae)]. Based on structural equation models, the effects of N additions on biocrust constituents were imposed through indirect effects on pH, soil electrical conductivity and ammonium concentrations. In summary, biocrust constituents are generally insensitive to chronic low levels of N depositions until rates reach above 1.5 g N m-2  yr-1 with diazotrophs being the most sensitive biocrust constituents followed by bacteria and finally fungi. Ultimately once the threshold is reached N deposition favours biocrust constituents utilizing inorganic N and other C sources over relying on phototrophic and/or N-fixing cyanobacteria for C and N.


Assuntos
Cianobactérias , Clima Desértico , Solo/química , Microbiologia do Solo , Fungos/genética , Ecossistema
20.
Mol Ecol ; 31(10): 2920-2934, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344623

RESUMO

Soil microbiota increase their fitness to local habitats by adjusting their life history strategies. Yet, how such adjustments drive their ecological adaptations in xeric grasslands remains elusive. In this study, shifts in the traits that potentially represent microbial life history strategies were studied along two aridity gradients with different climates using metagenomic and trait-based approaches. The results indicated that resource acquisition (e.g., higher activities of ß-d-glucosidase and N-acetyl-ß-d-glucosidase, higher degradation rates of cellulose and chitin, as well as genes involved in cell motility, biodegradation, transportation and competition) and growth yield (e.g., higher biomass and respiration) strategies were depleted at higher aridity. However, maintenance of cellular and high growth potential (e.g., higher metabolic quotients and genes related to DNA replication, transcription, translation, central carbon metabolism and biosynthesis) and stress tolerance (e.g., genes involved in DNA damage repair, cation transportation, sporulation and osmolyte biosynthesis) strategies were enriched at higher aridity. This implied that microbiota have lower growth yields but are probably well primed for rapid responses to pulses of rainfall in more arid soils, whereas those in less arid soils may have stronger resource acquisition and growth yield abilities. By integrating a large amount of evidence from taxonomic, metagenomic, genomic and biochemical investigations, this study demonstrates that the ecological adaptations of soil microbiota to aridity made by adjusting and optimizing their life history strategies are universal in xeric grasslands and provides an underlying mechanistic understanding of soil microbial responses to climate changes.


Assuntos
Características de História de Vida , Microbiota , Ecossistema , Glucosidases , Microbiota/genética , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...