Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399155

RESUMO

The fluorinated titanium dioxide (F-TiO2) hollow spheres with varying F to Ti molar ratios were prepared by a simple one-step hydrothermal method followed by thermal processing. The diameter of the F-TiO2-0.3 hollow spheres with a nominal ratio of F:Ti = 0.3:1 was about 200-400 nm. Compared with the sensor based on pristine TiO2 sensing materials, the F-TiO2-0.3 sensor displayed an enhanced sensing performance toward gaseous formaldehyde (HCHO) vapor at room temperature under ultraviolet (UV) light irradiation. The F-TiO2-0.3 sensor demonstrated an approximately 18-fold enhanced response (1.56) compared to the pristine TiO2 sensor (0.085). The response and recovery times of the F-TiO2-0.3 sensor to 10 ppm HCHO were about 56 s and 64 s, respectively, and a limit-of-detection value of 0.5 ppm HCHO was estimated. The F-TiO2-0.3 sensor also demonstrated good repeatability and selectivity to HCHO gas under UV light irradiation. The outstanding HCHO gas-sensing properties of the F-TiO2-0.3 sensor were related to the following factors: the excitation effect caused by the UV light facilitated surface chemical reactions with analyte gas species; the hollow sphere structure provided sufficient active sites; and the surface fluoride (≡Ti-F) created additional chemisorption sites on the surface of the TiO2 material.

2.
ACS Appl Mater Interfaces ; 16(6): 7565-7575, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38311836

RESUMO

In this study, p-type oxides including NiO, Co3O4, and CuO had been heterostructured with WS2 microflakes for chemiresistive-type gas sensors at room temperature. Microjunctions formed between p-type oxides and WS2 microflakes effectively modulated the sensitivities of the sensors to ammonia. In comparison to Co3O4- or CuO-decorated WS2-based sensors in which "deep energy puddles" were formed at the microjunctions between the oxides and WS2, the fabricated NiO/WS2 heterostructure-based sensor without the formed energy puddles exhibited a better sensing performance with improved sensitivity and a faster response to gaseous 1-10 ppm of NH3. It also processes a good selectivity to some volatile organic compounds including HCHO, toluene, CH3OH, C2H5OH, CH3COCH3, and trimethylamine (TMA). The underlying mechanisms for the enhanced responses were examined by employing in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory computation. The oxidization of NH3 on NiO/WS2 was much more intensified compared to those occurred on Co3O4/WS2 and CuO/WS2. NiO/WS2 has a stronger adsorption to NH3 and gains more effective charges transferred from NH3 which significantly contributes to the enhanced sensing properties.

3.
Small ; 20(23): e2309831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38133510

RESUMO

Non-invasive breath testing has gained increasing importance for early disease screening, spurring research into cheap sensors for detecting trace biomarkers such as ammonia. However, real-life deployment of ammonia sensors remains hindered by susceptibility to humidity-induced interference. The SnTe/SnSe heterojunction-based chemiresistive-type sensor demonstrates an excellent response/recovery to different concentrations of ammonia from 0.1 to 100 ppm at room temperature. The improved sensing properties of the heterojunctions-based sensors compared to single-phased SnTe or SnSe can be attributed to the stronger NH3 adsorptions, more Te vacancies, and hydrophobic surface induced by the formed SnTe/SnSe heterojunctions. The sensing mechanisms are investigated in detail by using in situ techniques such as diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), Kelvin probe, and a.c. impedance spectroscopy together with the Density-Function-Theory calculations. The formed heterojunctions boost the overall charge transfer efficiency between the ammonia and the sensing materials, thus leading to the desirable sensing features as well, with excellent resistance to ambient humidities.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37922403

RESUMO

A new technique of polarization doping was adopted to improve NO2 gas sensing properties of the polypyrrole (PPy) sensor. PPy nanosheets polarization doped with sodium dodecyl benzenesulfonate (SDBS) were synthesized by low-temperature polymerization. The semiagglomerated PPy nanosheets were well-dispersed and a large specific surface areas due to the introduction of dodecyl benzenesulfonate (DBS). The DBS doped PPy sensor shows excellent NO2 sensing performance. Polarization of sulfonate ions to PPy enhanced the adsorption ability of NO2 with the synergistic effect of NO2. The adsorption energy (-0.676 eV) and electron transfer (0.521 |e|) of PPy to NO2 increased greatly after doping. An unoccupied electron state is observed in the valence band electron structure of PPy/DBS after the adsorption of NO2 by calculations of Density Functional Theory (DFT). The intermolecular synergy between NO2 and PPy/DBS causes a strong polarization, resulting in a high polarization potential, which enhances the NO2 sensing performance of PPy sensor. It is of great significance to develop NO2 detection device based on PPy that works at room temperature.

5.
J Colloid Interface Sci ; 651: 602-611, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562302

RESUMO

Battery-like electrode materials are characterized by large theoretical capacitance but suffer from poor surface reactivity and insufficient electroactive sites thus limiting their practical charge storage capacity. To overcome this challenge, an effective strategy for vacancy modulation on battery-like electrode materials is necessary. Herein, we report for the first time an elaborately designed three-dimensional (3D) hierarchical heterostructure consisting of CoCx@NiCo-LDH on conductive nickel foam as a freestanding supercapacitor electrode. Benefiting from the weakening of the coordination of CoO bonds, the CoCx structure induces in-situ reconstruction of the NiCo-LDH lattice, resulting in the formation of abundant oxygen vacancies (interfacial octahedral Co2+ sites) that lower the OH- adsorption energy as determined by the density functional theory (DFT) calculation. The resulting CoCx@NiCo-LDH/NF electrode exhibits an ultrahigh rate capability (2330 mF cm-2 at 0.3 mA cm-2, with capacitance retention of 51.5 % at 30 mA cm-2) and remarkable cycling performance (capacitance retention of 81.6 % after 10,000 cycles). Additionally, the assembled asymmetric devices deliver an extremely high energy density of 246 µWh cm-2 at the power density of 798 µW cm-2, with 87.8 % capacitance retention after 10,000 cycles at 8 mA cm-2. Overall, this study presents a simple yet effective strategy to construct high-performance battery-like electrodes for potential applications in energy storage, transportation, and communication.

6.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297144

RESUMO

Au modified TiO2/In2O3 hollow nanospheres were synthesized by the hydrolysis method using the carbon nanospheres as a sacrificial template. Compared to pure In2O3, pure TiO2, and TiO2/In2O3 based sensors, the Au/TiO2/In2O3 nanosphere-based chemiresistive-type sensor exhibited excellent sensing performances to formaldehyde at room temperature under ultraviolet light (UV-LED) activation. The response of the Au/TiO2/In2O3 nanocomposite-based sensor to 1 ppm formaldehyde was about 5.6, which is higher than that of In2O3 (1.6), TiO2 (2.1), and TiO2/In2O3 (3.8). The response time and recovery time of the Au/TiO2/In2O3 nanocomposite sensor were 18 s and 42 s, respectively. The detectable formaldehyde concentration could go down as low as 60 ppb. In situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was used to analyze the chemical reactions on the surface of the sensor activated by UV light. The improvement in the sensing properties of the Au/TiO2/In2O3 nanocomposites could be attributed to the nanoheterojunctions and electronic/chemical sensitization of the Au nanoparticles.

7.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772557

RESUMO

The nature of the constituent components of composite materials can significantly affect the character of their interaction with the gas phase. In this work, nanocrystalline In2O3 was synthesized by the chemical precipitation method and was modified using reduced graphene oxide (rGO). The obtained composites were characterized by several analysis techniques-XRD, TEM, SEM, FTIR and Raman spectroscopy, XPS, TGA, and DRIFTS. The XPS and FTIR and Raman spectroscopy results suggested the formation of interfacial contact between In2O3 and rGO. The results of the gas sensor's properties showed that additional UV illumination led to a decrease in resistance and an increase in sensor response at room temperature. However, the presence of humidity at room temperature led to the disappearance of the response for pure In2O3, while for the composites, an inversion of the sensor response toward ammonia was observed. The main reason may have been the formation of NH4NO3 intermediates with further hydrolysis and decomposition under light illumination with the formation of nitrite and nitrate species. The presence of these species was verified by in situ DRIFT spectroscopy. Their strong electron-accepting properties lead to an increase in resistance, which possibly affected the sensor signal's inversion.

8.
ACS Appl Mater Interfaces ; 15(3): 4329-4342, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36623169

RESUMO

Hollow In2O3@TiO2 double-layer nanospheres were prepared via a facile water bath method using the sacrifice template of carbon nanospheres. It is shown that the size of the In2O3/TiO2 nanocomposites is 150-250 nm, the thickness of the In2O3 shell is about 10 nm, and the thickness of the TiO2 shell is about 15 nm. The sensing performances of the synthesized In2O3/TiO2 nanocomposites-based chemiresistive-type sensor to formaldehyde (HCHO) gas under UV light activation at room temperature have been studied. Compared to the pure In2O3- and pure TiO2-based sensors, the In2O3/TiO2 nanocomposite sensor exhibits much better sensing performances to formaldehyde. The response of the In2O3/TiO2 nanocomposite-based sensor to 1 ppm formaldehyde is about 3.8, and the response time and recovery time are 28 and 50 s, respectively. The detectable formaldehyde concentration can reach as low as 0.06 ppm. The role of the formed In2O3/TiO2 heterojunctions and the involved chemical reactions activated by UV light have been investigated by AC impedance spectroscopy and the in situ diffuse reflectance Fourier transform infrared spectroscopy. The improvement of the sensing properties of In2O3/TiO2 nanocomposites could be attributed to the nanoheterojunctions between the two components and the "combined photocatalytic effects" of UV-light-emitting diode irradiation. Density functional theory calculations demonstrated that introducing heterojunctions could improve the adsorption energy and charge transfer between formaldehyde and sensing materials.

9.
ACS Appl Mater Interfaces ; 15(3): 4194-4207, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631735

RESUMO

Detection of ultralow concentrations of ammonia is very important in many applications such as fishing, poultry, agriculture, industry, biomedicine, and clinical diagnosis. However, detecting sub-ppm NH3 remains a challenge for chemiresistive-type gas sensors. Two-dimensional (2D) materials display tremendous potential for effective gas detectors that can be used in these applications. The as-developed MXene/SnS2 heterojunction-based chemiresistive-type sensor presents superior gas-sensing performance toward sub-ppm ammonia at room temperature. The sensor can detect NH3 concentrations down to 10 ppb at room temperature. It also displays excellent long-term stability, with a decline in the response at ∼3.4% for 20 days. The developed sensor also displays good selectivity toward NH3 relative to some potential interferents, such as HCHO, C2H5OH, CH3OH, C3H6O, benzene, and NO2. The measured in situ diffuse-reflectance infrared Fourier transform (DRIFT) spectra confirm that the products of nitric oxides during the chemical reactions occurred at the surface of MXene/SnS2. Density functional theory (DFT) based on the first principles was implemented to compute the adsorption ability of NH3 at the surface of the MXene/SnS2 heterostructure. This indicates that the enhancement in the sensing properties of the MXene/SnS2 heterostructure-based chemosensor could be ascribed to the stronger NH3 adsorption, better catalytical activity, and more effective charge transfer bestowed by the formed heterostructure and the electron-redistribution-assisted stronger extraction of electrons from the sensing material.

10.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431698

RESUMO

Two-dimensional nanosheets of semiconductor metal oxides are considered as promising for use in gas sensors, because of the combination of a large surface-area, high thermal stability and high sensitivity, due to the chemisorption mechanism of gas detection. In this work, 2D SnO2 nanosheets were synthesized via the oxidation of template SnS2 nanosheets obtained by surfactant-assisted one-pot solution synthesis. The 2D SnO2 was characterized using transmission and scanning electron microscopy (TEM, SEM), X-ray diffraction (XRD), low-temperature nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and IR spectroscopy. The sensor characteristics were studied when detecting model gases CO and NH3 in dry (RH25 = 0%) and humid (RH25 = 30%) air. The combination of high specific-surface-area and increased surface acidity caused by the presence of residual sulfate anions provides a high 2D SnO2 sensor's signal towards NH3 at a low temperature of 200 °C in dry air, but at the same time causes an inversion of the sensor response when detecting NH3 in a humid atmosphere. To reveal the processes responsible for sensor-response inversion, the interaction of 2D SnO2 with ammonia was investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in dry and humid air at temperatures corresponding to the maximum "positive" and maximum "negative" sensor response.

11.
Biosensors (Basel) ; 12(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140099

RESUMO

This paper presents the development of a compact, three-electrode electrochemical device functionalized by a biocompatible layer of hyaluronic acid methacrylate (HAMA) hydrogel for the adsorptive removal of detrimental lead (Pb(II)) ions in aqueous solutions. An adsorption mechanism pertaining to the observed analytical performance of the device is proposed and further experimentally corroborated. It is demonstrated that both the molecular interactions originating from the HAMA hydrogel and electrochemical accumulation originating from the electrode beneath contribute to the adsorption capability of the device. Infrared spectral analysis reveals that the molecular interaction is mainly induced by the amide functional group of the HAMA hydrogel, which is capable of forming the Pb(II)-amide complex. In addition, inductively coupled plasma mass spectrometric (ICP-MS) analysis indicates that the electrochemical accumulation is particularly valuable in facilitating the adsorption rate of the device by maintaining a high ion-concentration gradient between the solution and the hydrogel layer. ICP-MS measurements show that 94.08% of Pb(II) ions present in the test solution can be adsorbed by the device within 30 min. The HAMA hydrogel-modified electrochemical devices exhibit reproducible performance in the aspect of Pb(II) removal from tap water, with a relative standard deviation (RSD) of 1.28% (for n = 8). The experimental results suggest that the HAMA hydrogel-modified electrochemical device can potentially be used for the rapid, on-field remediation of Pb(II) contamination.


Assuntos
Ácido Hialurônico , Poluentes Químicos da Água , Adsorção , Amidas , Hidrogéis , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo , Metacrilatos , Soluções , Água/química , Poluentes Químicos da Água/química
12.
ACS Appl Mater Interfaces ; 13(17): 20336-20348, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900063

RESUMO

A novel chemiresistive-type sensor for detecting sub-ppm NO2 has been fabricated using AuPt bimetal-decorated SnSe2 microflowers, which was synthesized by the hydrothermal treatment followed by in situ chemical reduction of the bimetal precursors on the surface of the petals of the microflowers. The as-prepared sensor registers a superior performance in detection of sub-ppm concentration of NO2. Functionalized by the AuPt bimetal, the SnSe2 microflower-based sensor shows a response of approximately 4.62 to 8 ppm NO2 at 130 °C. It is significantly higher than those of the sensors using the pristine SnSe2 (∼2.29) and the modified SnSe2 samples by a single metal, either Au (∼3.03) or Pt (∼3.97). The sensor demonstrates excellent long-term stability, signal repeatability, and selectivity to some typical interfering gaseous species including ammonia, acetone, formaldehyde, ethanol, methanol, benzene, CO2, SO2, and CO. The remarkable improvement of the sensitive characteristics could be induced by the electronic and chemical sensitization and the synergistic effect of the AuPt bimetal. Density functional theory (DFT) is implemented to calculate the adsorption states of NO2 on the sensing materials and thus to possibly reveal the sensing mechanism. The significantly enhanced response of the SnSe2-based sensor decorated with AuPt bimetallic nanoparticles has been found to be possibly caused by the orbital hybridization of O, Au, and Pt atoms leading to the redistribution of electrons, which is beneficial for NO2 molecules to obtain more electrons from the composite material.

14.
Adv Mater ; 32(11): e1907249, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32009275

RESUMO

It is well known that the photovoltaic effect produces a direct current (DC) under solar illumination owing to the directional separation of light-excited charge carriers at the p-n junction, with holes flowing to the p-side and electrons flowing to the n-side. Here, it is found that apart from the DC generated by the conventional p-n photovoltaic effect, there is another new type of photovoltaic effect that generates alternating current (AC) in the nonequilibrium states when the illumination light periodically shines at the junction/interface of materials. The peak current of AC at high switching frequency can be much higher than that from DC. The AC cannot be explained by the established mechanisms for conventional photovoltaics; instead, it is suggested to be a result of the relative shift and realignment between the quasi-Fermi levels of the semiconductors adjacent to the junction/interface under the nonequilibrium conditions, which results in electron flow in the external circuit back and forth to balance the potential difference between two electrodes. By virtue of this effect, the device can work as a high-performance broadband photodetector with extremely high sensitivity under zero bias; it can also work as a remote power source providing extra power output in addition to the conventional photovoltaic effect.

15.
ACS Appl Mater Interfaces ; 11(32): 29029-29040, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313913

RESUMO

Mesoporous ZnSe/ZnO heterojunctions were prepared by the in situ thermal oxidation of ZnSe at elevated temperatures in air. The partial replacement of selenium by oxygen in the ZnSe nanoflakes led to a highly porous microstructure with 8.2 nm mesopores distributed fairly uniformly within the formed heterojunction sample. The as-fabricated mesoporous ZnSe/ZnO heterojunction-based sensor exhibits an approximately 7.3-fold significantly higher response than those of both pristine ZnO- and ZnSe-based sensors when exposed to 8 ppm NO2 at 200 °C. This sensor also demonstrates excellent selectivity for methanol, ethanol, acetone, benzene, methylbenzene, ammonia, and formaldehyde. The significantly enhanced response of the ZnSe/ZnO-based sensor is due to the mesoporous microstructure during thermal oxidation of ZnSe to ZnO, yielding more active sites and the accumulation of electrons in the ZnO nanocrystals transferred between ZnSe/ZnO interfaces.

16.
ACS Nano ; 13(2): 2289-2297, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30677292

RESUMO

Silicon photonics is now widely accepted as a key technology in a variety of systems. But owing to material limitations, now it is challenging to greatly improve the performance after decades of development. Here, we show a high-performance broadband photodetector with significantly enhanced sensitivity and responsivity operating over a wide wavelength range of light from near-ultraviolet to near-infrared at low power consumption. The specially designed textured top ceiling electrode works effectively as an antireflection layer to greatly improve the absorption of near-infrared light, thereby overcoming the absorption limitation of near-infrared light. Instead of the conventional p-n junction and p-intrinsic-n junction, we introduce a ∼15 nm thick alumina insulator layer between a p-type Si substrate and n-type ZnO nanowire (NW) arrays, which significantly enhances the charge carrier separation and collection efficiency. The photosensing responsivity and sensitivity are found to be nearly 1 order of magnitude higher than that of a reference device of p-Si/n-ZnO NW arrays, significantly higher than the commercial silicon photodiodes as well. The light-induced charge carriers flow across the appropriate thickness of insulator layer via the quantum mechanical Fowler-Nordheim tunneling mechanism. By virtue of the piezo-phototronic effect, the charge density at the interfaces can be tuned to alter the energy bands and the potential barrier distance for tunneling. Additionally, along with the use of incident light of different wavelengths, the influence of the insulator layer on the transport of electrons and holes separately is further investigated. The demonstrated concepts and study would lead to sensitivity improvement, quality enhancement of data transfer, decrease of power consumption, and cost reduction of silicon photonics.

17.
Nanomaterials (Basel) ; 8(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347667

RESUMO

Two-dimensional (2D) nanomaterials have attracted a large amount of attention regarding gas sensing applications, because of their high surface-to-volume ratio and unique chemical or physical gas adsorption capabilities. As an important research method, theoretical calculations have been massively applied in predicting the potentially excellent gas sensing properties of these 2D nanomaterials. In this review, we discuss the contributions of theoretical calculations in the study of the gas sensing properties of 2D nanomaterials. Firstly, we elaborate on the gas sensing mechanisms of 2D layered nanomaterials, such as the traditional charge transfer mechanism, and a standard for distinguishing between physical and chemical adsorption, from the perspective of theoretical calculations. Then, we describe how to conduct a theoretical analysis to explain or predict the gas sensing properties of 2D nanomaterials. Thirdly, we discuss three important methods that have been applied in order to improve the gas sensing properties, that is, defect functionalization (vacancy, edge, grain boundary, and doping), heterojunctions, and electric fields. Among these strategies, theoretical calculations play a very important role in explaining the mechanisms underlying the enhanced gas sensing properties. Finally, we summarize both the advantages and limitations of the theoretical calculations, and present perspectives for further research on the 2D nanomaterials-based gas sensors.

18.
Nanomaterials (Basel) ; 8(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987213

RESUMO

Three-dimensional hierarchical SnO2/ZnO hetero-nanofibers were fabricated by the electrospinning method followed with a low-temperature water bath treatment. These hierarchical hollow SnO2 nanofibers were assembled by the SnO2 nanoparticles through the electrospinning process and then the ZnO nanorods were grown vertically on the surface of SnO2 nanoparticles, forming the 3D nanostructure. The synthesized hollow SnO2/ZnO heterojunctions nanofibers were further employed to be a gas-sensing material for detection of volatile organic compound (VOC) species such as acetone vapor, which is proposed as a gas biomarker for diabetes. It shows that the heterojunction nanofibers-based sensor exhibited excellent sensing properties to acetone vapor. The sensor shows a good selectivity to acetone in the interfering gases of ethanol, ammonia, formaldehyde, toluene, and methanol. The enhanced sensing performance may be due to the fact that n-n 3D heterojunctions, existing at the interface between ZnO nanorods and SnO2 particles in the SnO2/ZnO nanocomposites, could prompt significant changes in potential barrier height when exposed to acetone vapor, and gas-sensing mechanisms were analyzed and explained by Schottky barrier changes in SnO2/ZnO 3D hetero-nanofibers.

19.
Sensors (Basel) ; 18(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29382155

RESUMO

In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5) were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm) coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 µm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

20.
Adv Mater ; 29(29)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585269

RESUMO

Silicon underpins nearly all microelectronics today and will continue to do so for some decades to come. However, for silicon photonics, the indirect band gap of silicon and lack of adjustability severely limit its use in applications such as broadband photodiodes. Here, a high-performance p-Si/n-ZnO broadband photodiode working in a wide wavelength range from visible to near-infrared light with high sensitivity, fast response, and good stability is reported. The absorption of near-infrared wavelength light is significantly enhanced due to the nanostructured/textured top surface. The general performance of the broadband photodiodes can be further improved by the piezo-phototronic effect. The enhancement of responsivity can reach a maximum of 78% to 442 nm illumination, the linearity and saturation limit to 1060 nm light are also significantly increased by applying external strains. The photodiode is illuminated with different wavelength lights to selectively choose the photogenerated charge carriers (either electrons or holes) passing through the depletion region, to investigate the piezo-phototronic effect on electron or hole transport separately for the first time. This is essential for studying the basic principles in order to develop a full understanding about piezotronics and it also enables the development of the better performance of optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...