Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957004

RESUMO

Electrocatalytic oxygenation of hydrocarbons with high selectivity has attracted much attention for its advantages in the sustainable and controllable production of oxygenated compounds with reduced greenhouse gas emissions. Especially when utilizing water as an oxygen source, by constructing a water-to-oxygenates conversion system at the anode, the environment and/or energy costs of producing oxygenated compounds and hydrogen energy can be significantly reduced. There is a broad consensus that the generation and transformation of oxygen species are among the decisive factors determining the overall efficiency of oxygenation reactions. Thus, it is necessary to elucidate the oxygen transfer process to suggest more efficient strategies for electrocatalytic oxygenation. Herein, we introduce oxygen transfer routes through redox-mediated pathways or direct oxygen transfer methods. Especially for the scarcely investigated direct oxygen transfer at the anode, we aim to detail the strategies of catalyst design targeting the efficient oxygen transfer process including activation of organic substrate, generation/adsorption of oxygen species, and transformation of oxygen species for oxygenated compounds. Based on these examples, the significance of balancing the generation and transformation of oxygen species, tuning the states of organic substrates and intermediates, and accelerating electron transfer for organic activation for direct oxygen transfer has been elucidated. Moreover, greener organic synthesis routes through heteroatom transfer and molecular fragment transfer are anticipated beyond oxygen transfer.

3.
Ying Yong Sheng Tai Xue Bao ; 35(4): 997-1006, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884234

RESUMO

Water use efficiency (WUE) is a key indicator for predicting the impacts of climate change on ecosystem carbon and water cycles. Most studies have explored the changes in the response environment of WUE at a particular scale. Few studies have examined how WUE responds to environments at multiple scales, thus limiting our in-depth understanding of the cross-scale carbon and water cycles. In this study, we measured photosynthesis and transpiration in situ periodically and continuously from June to October 2022 in a community dominated by Artemisia ordosica in Mu Us Sandy Land, and analyzed the seasonal variations in WUE at leaf, canopy, and ecosystem scales. The results showed there were significant seasonal variations in leaf water use efficiency (WUEL), canopy water use efficiency (WUET), and ecosystem water use efficiency (WUEE). WUEL was large in June and small in both August and September, ranging from 0.73-2.98 µmol·mmol-1. Both WUET and WUEE were lowest in June and highest in July and August, ranging from 0.10-7.00 and 0.06-6.25 µmol·mmol-1. WUEL was significantly negatively correlated with stomatal conductance. WUET was significantly positively correlated with canopy conduc-tance and soil water content, and negatively correlated with vapor pressure deficit (VPD). There was a significant positive correlation between WUEE and soil water content (SWC10) in 10 cm soil depth. The structural equation model showed that SWC10 and air temperature affected net photosynthetic rate and transpiration rate by modifying stomatal conductance, and thus affecting WUEL. VPD and SWC10 affected WUET by altering transpiration. SWC10, air temperature, and VPD affected WUEE by regulating ecosystem gross primary productivity. The modelling of carbon and water cycles should thoroughly consider the path and intensity of the effect of environmental factors on WUE at multiple scales.


Assuntos
Artemisia , Ecossistema , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Água , Artemisia/metabolismo , Artemisia/crescimento & desenvolvimento , Artemisia/fisiologia , Água/metabolismo , Água/análise , China , Folhas de Planta/metabolismo , Folhas de Planta/química , Clima Desértico , Mudança Climática , Estações do Ano
4.
J Am Chem Soc ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935866

RESUMO

Electrocatalytic semihydrogenation of alkynols presents a sustainable alternative to conventional thermal methodologies for the high-value production of alkenols. The design of efficient catalysts with superior catalytic and energy efficiency for semihydrogenation poses a significant challenge. Here, we present the application of an electron-divergent Cu3Pd alloy-based heterojunction in promoting the electrocatalytic semihydrogenation of alkynols to alkenols using water as the proton source. The tunable electron divergence of Cuδ- and Pdδ+, modulated by rectifying contact with nitrogen-rich carbons, enables the concerted binding of active H species from the Volmer step of water dissociation and the C≡C bond of alkynols on Pdδ+ sites. Simultaneously, the pronounced electron divergence of Cu3Pd facilitates the universal adsorption of OH species from the Volmer step and alkynols on the Cuδ- sites. The electron-divergent dual-center substantially boosts water dissociation and inhibition of completing hydrogen evolution to give a turnover frequency of 2412 h-1, outperforming the reported electrocatalysts' value of 7.3. Moreover, the continuous production of alkenols at industrial-related current density (-200 mA cm-2) over the efficient and durable Cu3Pd-based electrolyzer could achieve a cathodic energy efficiency of 45 mol kW·h-1, 1.7 times the bench-marked reactors, promising great potential for sustainable industrial synthesis.

5.
Sci Rep ; 14(1): 1839, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246959

RESUMO

Our previous study showed that levels of circulating insulin-like growth factor binding protein-1 (IGFBP-1) has potential diagnostic value for early-stage upper gastrointestinal cancers. This study aimed to assess whether serum IGFBP-1 is a potential diagnostic and prognostic biomarker for CRC patients. IGFBP-1 mRNA expression profile data of peripheral blood in colorectal cancer (CRC) patients were downloaded and analyzed from Gene Expression Omnibus database. We detected serum IGFBP-1 in 138 CRC patients and 190 normal controls using enzyme-linked immunosorbent assay. Blood IGFBP-1 mRNA levels were higher in CRC patients than those in normal controls (P = 0.027). In addition, serum IGFBP-1 protein levels in the CRC group were significantly higher than those in normal control group (P < 0.0001). Serum IGFBP-1 demonstrated better diagnostic accuracy for all CRC and early-stage CRC, respectively, when compared with carcinoembryonic antigen (CEA), carbohydrate antigen19-9 (CA 19-9) or the combination of CEA and CA19-9. Furthermore, Cox multivariate analysis revealed that serum IGFBP-1 was an independent prognostic factor for OS (HR = 2.043, P = 0.045). Our study demonstrated that serum IGFBP-1 might be a potential biomarker for the diagnosis and prognosis of CRC. In addition, the nomogram might be helpful to predict the prognosis of CRC.


Assuntos
Neoplasias Colorretais , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Humanos , Antígeno Carcinoembrionário , Prognóstico , RNA Mensageiro , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
6.
Quant Imaging Med Surg ; 13(7): 4563-4577, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456330

RESUMO

Background: Myocardial work (MW) indices and longitudinal strain (LS) are sensitive markers of early left ventricular systolic dysfunction. Stress computed tomography myocardial perfusion imaging (CT-MPI) can assess early myocardial ischemia. The association between resting MW indices and stress myocardial perfusion remains unclear. This study compares resting MW indices with LS to assess stress myocardial perfusion in angina patients with non-obstructive coronary artery disease (CAD). Methods: Eighty-four patients who underwent resting echocardiography, coronary computed tomography angiography, and stress CT-MPI were reviewed. Seventeen myocardial segments were divided into three regions according to the epicardial coronary arteries. Global indices included global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE). Regional indices included regional longitudinal strain (RLS), regional work index (RWI), and regional work efficiency (RWE). Reduced global perfusion was defined as an average stress myocardial blood flow (MBF) <116 mL/100 mL/min for the whole heart. Reduced regional perfusion was defined as an average stress MBF <116 mL/100 mL/min for the coronary territories. No patients demonstrated obstructions in the epicardial coronary arteries (stenosis diameter <50%). The MW indices and LS were compared. Receiver operating characteristic curves were constructed and logistic regression analyses were used to investigate the predictors of reduced myocardial perfusion. Results: Patients with reduced stress perfusion demonstrated reduced GLS, GWI, GCW, and GWE (P<0.05) and increased GWW (P<0.05). After adjustment for age and sex, GWE was still independently associated with reduced myocardial perfusion (odds ratio =0.386, 95% confidence interval: 0.214-0.697; P<0.05). Receiver operating characteristic curves reflected the good diagnostic ability of GWE and its superiority to GLS (area under the curve: 0.858 vs. 0.741). The optimal cutoff GWE value was 95% (sensitivity, 70%; specificity, 90%). Regions with lower stress perfusion showed lower RLS, RWI, and RWE (P<0.05). The optimal cutoff value of RWE for predicting reduced regional perfusion was 95%, with an area under the curve of 0.780, a sensitivity of 62%, and a specificity of 83%. Conclusions: Resting MW indices perform well in assessing global and regional stress myocardial perfusion in angina patients with non-obstructive CAD, and GWE is superior to GLS in the global evaluations.

7.
PeerJ ; 11: e15419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304887

RESUMO

Backgrounds: Early detection might help in reducing the burden and promoting the survival rate of gastric cancers. Herein, we tried to explore the diagnostic value of insulin-like growth factor binding protein 7 (IGFBP7) in gastric cancers. Methods: In this study, we first analyzed the expression levels and prognostic value of IGFBP7 mRNA in gastric cancers from The Cancer Genome Atlas (TCGA) database. Then, we recruited 169 gastric cancer patients and 100 normal controls as training cohort, and 55 gastric cancer patients and 55 normal controls as independent validation cohort. Enzyme-linked immunosorbent assay was applied to test the serum levels of IGFBP7. The receiver operating characteristic curve (ROC) and the area under the curve (AUC) were applied to evaluation the diagnostic value. Results: TCGA showed that IGFBP7 mRNA was dysregulated and associated with prognosis in gastric cancer patients. Then, we examined the expression of serum IGFBP7 and found that serum IGFBP7 expressed lower in gastric cancer patients than normal controls both in training and independent validation cohorts (p < 0.0001). In training cohort, with the cutoff value of 1.515 ng/ml, the AUC for distinguishing gastric cancer patients was 0.774 (95% CI [0.713-0.836]) with sensitivity of 36.7% (95% CI [29.5-44.5]) and specificity of 90.0% (95% CI [82.0-94.8]). As for early-stage EJA, the AUC was 0.773 (95% CI [0.701-0.845]) with the sensitivity of 33.3% (95% CI [14.4-58.8]). In independent validation cohort, with the same cutoff value, the AUC reached to 0.758 (95% CI [0.664-0.852]). Similarly, for early-stage gastric cancer diagnosis in the independent validation cohort, the AUC value was 0.778 (95% CI [0.673-0.882]). Conclusions: This study indicated that serum IGFBP7 might act as a potential early diagnostic marker for gastric cancers.


Assuntos
Neoplasias Gástricas , Humanos , Área Sob a Curva , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , RNA Mensageiro/genética , Neoplasias Gástricas/diagnóstico
8.
Chem Rev ; 123(1): 1-30, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342422

RESUMO

The functions of interfacial synergy in heterojunction catalysts are diverse and powerful, providing a route to solve many difficulties in energy conversion and organic synthesis. Among heterojunction-based catalysts, the Mott-Schottky catalysts composed of a metal-semiconductor heterojunction with predictable and designable interfacial synergy are rising stars of next-generation catalysts. We review the concept of Mott-Schottky catalysts and discuss their applications in various realms of catalysis. In particular, the design of a Mott-Schottky catalyst provides a feasible strategy to boost energy conversion and chemical synthesis processes, even allowing realization of novel catalytic functions such as enhanced redox activity, Lewis acid-base pairs, and electron donor-acceptor couples for dealing with the current problems in catalysis for energy conversion and storage. This review focuses on the synthesis, assembly, and characterization of Schottky heterojunctions for photocatalysis, electrocatalysis, and organic synthesis. The proposed design principles, including the importance of constructing stable and clean interfaces, tuning work function differences, and preparing exposable interfacial structures for designing electronic interfaces, will provide a reference for the development of all heterojunction-type catalysts, electrodes, energy conversion/storage devices, and even super absorbers, which are currently topics of interest in fields such as electrocatalysis, fuel cells, CO2 reduction, and wastewater treatment.

9.
Discov Oncol ; 13(1): 128, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409444

RESUMO

BACKGROUND: Esophagogastric junction adenocarcinoma (EJA) lacks serum biomarkers to assist in diagnosis and prognosis. Here, we aimed to evaluate the diagnostic and prognostic value of serum insulin-like growth factor binding protein 3 (IGFBP3) in EJA patients. METHODS: 320 participants were recruited from November 2016 to January 2020, who were randomly divided into a training cohort (112 normal controls and 102 EJA patients including 24 early-stage patients) and a validation cohort (56 normal controls and 50 EJA patients including 12 early-stage patients). We used receiver operating characteristics curve (ROC) to evaluate diagnostic value. The predictive performance of the nomogram was evaluated by the concordance index (C-index). RESULTS: Serum IGFBP3 levels were significantly lower in early-stage EJA or EJA patients than those in controls (P < 0.01). Measurement of serum IGFBP3 demonstrated an area under curve of 0.819, specificity 90.18% and sensitivity 43.14% in training cohort. Similar results were observed in validation cohort (0.804, 87.50%, 42.00%). Importantly, serum IGFBP3 had a satisfactory diagnostic value for early-stage EJA (0.822, 90.18%, 45.83% and 0.811, 84.48%, 50.00% in training and validation cohorts, respectively). Furthermore, survival analysis demonstrated that lower serum IGFBP3 level was related to poor prognosis (P < 0.05). Cox multivariate analysis revealed that serum IGFBP3 was an independent prognostic factor (HR = 0.468, P = 0.005). Compared with TNM stage, a nomogram based on serum IGFBP3, tumor size and TNM stage indicated an improved C-index in prognostic prediction (0.625 vs. 0.735, P = 0.001). CONCLUSIONS: We found that serum IGFBP3 was a potential diagnostic and prognostic marker of EJA. Meanwhile, the nomogram might predict the prognosis of EJA more accurately and efficiently.

10.
Ann Med ; 54(1): 2153-2166, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35930383

RESUMO

BACKGROUND: Insulin-like growth factor binding protein-3 (IGFBP3) has been reported to be related to the risk of some cancers. Here we focussed on serum IGFBP3 as a possible biomarker of diagnosis and prognosis for oesophageal squamous carcinoma (ESCC). METHODS: Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum IGFBP3 level in the training cohort including 136 ESCC patients and 119 normal controls and the validation cohort with 55 ESCC patients and 42 normal controls. The receiver operating characteristics curve (ROC) was used to assess the diagnosis value. Cox proportional hazards model was applied to select factors for survival nomogram construction. RESULTS: Serum IGFBP3 levels were significantly lower in early-stage ESCC or ESCC patients than those in normal controls (p < .05). The specificity and sensitivity of serum IGFBP3 for the diagnosis of ESCC were 95.80% and 50.00%, respectively, with the area under the ROC curve (AUC) of 0.788 in the training cohort. Similar results were observed in the validation cohort (88.10%, 38.18%, and 0.710). Importantly, serum IGFBP3 could also differentiate early-stage ESCC from controls (95.80%, 52.54%, 0.777 and 88.10%, 36.36%, 0.695 in training and validation cohorts, respectively). Furthermore, Cox multivariate analysis revealed that serum IGFBP3 was an independent prognostic risk factor (HR = 2.599, p = .002). Lower serum IGFBP3 level was correlated with reduced overall survival (p < .05). Nomogram based on serum IGFBP3, TNM stage, and tumour size improved the prognostic prediction of ESCC with a concordance index of 0.715. CONCLUSION: We demonstrated that serum IGFBP3 was a potential biomarker of diagnosis and prognosis for ESCC. Meanwhile, the nomogram might help predict the prognosis of ESCC. Key MessageSerum IGFBP3 showed early diagnostic value in oesophageal squamous cell carcinoma with independent cohort validation. Moreover, serum IGFBP3 was identified as an independent prognostic risk factor, which was used to construct a nomogram with improved prognosis ability in oesophageal squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Esofágicas/diagnóstico , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Humanos , Prognóstico , Curva ROC
11.
Angew Chem Int Ed Engl ; 61(35): e202207108, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35789523

RESUMO

Production of more than 20 million tons of epoxides per year from olefins suffers from low atom economy due to the use of oxidants and complex catalysts with unsatisfactory selectivity, leading to huge environmental and economic costs. We present a proof-of-concept application of electron-rich RuO2 nanocrystals to boost the highly selective epoxidation of cyclooctene via direct oxygen transfer from water as the sole oxygen source under mild conditions. The enhanced electron enrichment of RuO2 nanocrystals via the Schottky effect with nitrogen-doped carbons largely promotes the capture and activation of cyclooctene to give a high turnover frequency (260 h-1 ) of cyclooctene oxide, far surpassing the reported values (<20 h-1 ) of benchmarked catalysts at room temperature with oxidants. Our electron-rich RuO2 electrocatalysts enable efficient and durable hydrogen production (Faradaic efficiency >90 %) on the cathode without impacting on the selectivity to epoxide (>99 %) on the anode.

12.
J Fungi (Basel) ; 8(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628775

RESUMO

The members of Phyllachora are biotrophic, obligate plant parasitic fungi featuring a high degree of host specificity. This genus also features a high degree of species richness and worldwide distribution. In this study, four species occurring on leaf and stem of two different species of grass were collected from Shanxi and Shaanxi Provinces, China. Based on morphological analysis, multigene (combined data set of LSU, SSU, and ITS) phylogenetic analyses (maximum likelihood and Bayesian analysis), and host relationship, we introduce herein four new taxa of Phyllachora. Ancestral area reconstruction analysis showed that the ancestral area of Phyllachora occurred in Latin America about 194 Mya. Novel taxa are compared with the related Phyllachora species. Detailed descriptions, illustrations, and notes are provided for each species.

13.
Small ; 18(19): e2200885, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35396794

RESUMO

Solar-driven production of hydrogen peroxide (H2 O2 ), as an important industrial chemical oxidant with an extensive range of applications, from oxygen reduction is a sustainable alternative to mainstream anthraquinone oxidation and direct hydrogenation of dioxygen methods. The efficiency of solar to hydrogen peroxide over semiconductor-based photocatalysts is still largely limited by the narrow light absorption to visible light. Here, the authors proposed and demonstrate the proof-of-concept application of light-generated hot electrons in a graphene/semiconductor (exemplified with widely used TiO2 ) dyad to largely extend visible light spectra up to 800 nm for efficient H2 O2 production. The well-designed graphene/semiconductor heterojunction has a rectifying interface with a zero barrier for the hot electron injection, largely boosting excited hot electrons with an average lifetime of ≈0.5 ps into charge carriers with a long fluorescent lifetime (4.0 ns) for subsequent H2 O2 production. The optimized dyadic photocatalyst can provide an H2 O2 yield of 0.67 mm g-1  h-1 under visible light irradiation (λ ≥ 400 nm), which is 20 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst, and even achieves an H2 O2 yield of 0.14 mm g-1  h-1 upon photoexcitation by near-infrared-region light (≈800 nm).

14.
J Am Chem Soc ; 144(12): 5418-5423, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35230846

RESUMO

Merging existing catalysts together as a cascade catalyst may achieve "one-pot" synthesis of complex but functional molecules by simplifying multistep reactions, which is the blueprint of sustainable chemistry with low pollutant emission and consumption of energy and materials only when the smooth mass exchange between different catalysts is ensured. Effective strategies to facilitate the mass exchange between different active centers, which may dominate the final activity of various cascade catalysts, have not been reached until now, even though charged interfaces due to work function driven electron exchange have been widely observed. Here, we successfully constructed mass (reactants and intermediates) exchange paths between Pd/N-doped carbon and MoC/N-doped carbon induced by interfacial electron exchange to trigger the mild and cascade methylation of amines using CO2 and H2. Theoretical and experimental results have demonstrated that the mass exchange between electron-rich MoC and electron-deficient Pd could prominently improve the production of N,N-dimethyl tertiary amine, which results in a remarkably high turnover frequency value under mild conditions, outperforming the state-of-the-art catalysts in the literature by a factor of 5.9.


Assuntos
Dióxido de Carbono , Elétrons , Aminas/química , Carbono/química , Dióxido de Carbono/química , Catálise
15.
Chemistry ; 28(14): e202103918, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34936146

RESUMO

Surface electric field of catalyst is widely recognized as one of the key points to boost catalytic activity. However, there is still a lack of convenient ways to tune the surface electric field to selectively boost the catalytic conversions of different types of reactants in specific catalytic reactions. Here, we introduce a conceptually new method to tune the surface electric field of electrode materials by adjusting the number and density of heterojunctions inside. Both theoretical and experimental results prove that the well-designed surface electric field of an electrocatalyst plays a key role in facilitating pre-adsorption and/or activation of reactants for selective conversion of trash ions to useful products in hydrogen and oxygen evolution reactions as well as NOx - reduction reactions.

16.
Angew Chem Int Ed Engl ; 60(49): 25766-25770, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585481

RESUMO

Platinum (Pt) is the most effective bench-marked catalyst for producing renewable and clean hydrogen energy by electrochemical water splitting. There is demand for high HER catalytic activity to achieve efficient utilization and minimize the loading of Pt in catalysts. In this work, we significantly boost the HER mass activity of Pt nanoparticles in Ptx /Co to 8.3 times higher than that of commercial Pt/C by using Co/NC heterojunctions as a heterogeneous version of electron donors. The highly coupled interfaces between Co/NC and Pt metal enrich the electron density of Pt nanoparticles to facilitate the adsorption of H+ , the dissociation of Pt-H bonds and H2 release, giving the lowest HER overpotential of 6.9 mV vs. RHE at 10 mA cm-2 in acid among reported HER electrocatalysts. Given the easy scale-up synthesis due to the stabilization of ultrafine Pt nanoparticles by Co/NC solid ligands, Ptx /Co can even be a promising substitute for commercial Pt/C for practical applications.

17.
Angew Chem Int Ed Engl ; 60(38): 20711-20716, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34313361

RESUMO

NOx - reduction acts a pivotal part in sustaining globally balanced nitrogen cycle and restoring ecological environment, ammonia (NH3 ) is an excellent energy carrier and the most valuable product among all the products of NOx - reduction reaction, the selectivity of which is far from satisfaction due to the intrinsic complexity of multiple-electron NOx - -to-NH3 process. Here, we utilize the Schottky barrier-induced surface electric field, by the construction of high density of electron-deficient Ni nanoparticles inside nitrogen-rich carbons, to facilitate the enrichment and fixation of all NOx - anions on the electrode surface, including NO3 - and NO2 - , and thus ensure the final selectivity to NH3 . Both theoretical and experimental results demonstrate that NOx - anions were continuously captured by the electrode with largely enhanced surface electric field, providing excellent Faradaic efficiency of 99 % from both electrocatalytic NO3 - and NO2 - reduction. Remarkably, the NH3 yield rate could reach the maximum of 25.1 mg h-1 cm-2 in electrocatalytic NO2 - reduction reaction, outperforming the maximum in the literature by a factor of 6.3 in neutral solution. With the universality of our electrocatalyst, all sorts of available electrolytes containing NOx - pollutants, including seawater or wastewater, could be directly used for ammonia production in potential through sustainable electrochemical technology.

18.
Nat Commun ; 12(1): 3882, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162882

RESUMO

The activation of C-H bonds is a central challenge in organic chemistry and usually a key step for the retro-synthesis of functional natural products due to the high chemical stability of C-H bonds. Electrochemical methods are a powerful alternative for C-H activation, but this approach usually requires high overpotential and homogeneous mediators. Here, we design electron-deficient W2C nanocrystal-based electrodes to boost the heterogeneous activation of C-H bonds under mild conditions via an additive-free, purely heterogeneous electrocatalytic strategy. The electron density of W2C nanocrystals is tuned by constructing Schottky heterojunctions with nitrogen-doped carbon support to facilitate the preadsorption and activation of benzylic C-H bonds of ethylbenzene on the W2C surface, enabling a high turnover frequency (18.8 h-1) at a comparably low work potential (2 V versus SCE). The pronounced electron deficiency of the W2C nanocatalysts substantially facilitates the direct deprotonation process to ensure electrode durability without self-oxidation. The efficient oxidation process also boosts the balancing hydrogen production from as-formed protons on the cathode by a factor of 10 compared to an inert reference electrode. The whole process meets the requirements of atomic economy and electric energy utilization in terms of sustainable chemical synthesis.

19.
Chem Commun (Camb) ; 57(56): 6927-6930, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34155494

RESUMO

3d-4f heterometallic supertetrahedral clusters with the formula of Ln4Zn6(µ6-O)L4(CH3COO)6(NO3)4(CH3OH)4(H2O)2 (1-Ln, Ln = Eu, Gd, Tb, H3L = 2-(hydroxymethyl)-2-(pyridin-4-yl)-1,3-propanediol) have been successfully introduced as stable secondary building units (SBUs) to construct new cluster-organic frameworks with tunable emission, demonstrating a promising strategy for developing new optical materials.

20.
Chem Commun (Camb) ; 57(6): 741-744, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33346273

RESUMO

Stille cross-coupling reactions catalysed by an ideal catalyst combining the high activity of homogeneous catalysts and the reusability of heterogeneous catalysts are of great interest for C-C bond formation, which is a widely used reaction in fine chemistry. Despite great effort to increase the utilization ratio of surface metal atoms, the activity of heterogeneous catalysts under mild conditions remains unsatisfactory. Herein, we design a proof-of-concept strategy to trigger the room-temperature activity of heterogeneous Au catalysts by decreasing the electron density at the interface of a rationally designed Schottky heterojunction of Au metals and boron-doped carbons. The electron-deficient Au nanoparticles formed as a result of the rectifying contact with boron-doped carbons facilitate the autocleavage of C-Br bonds for highly efficient C-C coupling reactions of alkylbromides and allylstannanes with a TOF value of 5199 h-1 at room temperature, surpassing that of the state-of-the-art homogeneous catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...