Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38598963

RESUMO

Under global warming, heat stress can induce the excessive production of reactive oxygen species, causing irreversible damage to aquatic animals. It is essential to predict potentially harmful impacts on aquatic organisms under heat stress. Eriocheir sinensis, a typical crustacean crab, is widely distributed in China, American and Europe. Parent E. sinensis need migrate to the estuaries to reproduce in winter, and temperature is a key environmental factor. Herein, we performed a comprehensive transcriptomic and proteomic analysis in the hepatopancreas of E. sinensis under heat stress (20 °C and 30 °C), focusing on heat shock protein family, antioxidant system, energy metabolism and immune defense. The results revealed that parent E. sinensis generated adaptative responses to maintain physiological function under 20 °C stress via the transcriptional up-regulation of energy metabolism enzymes, mRNA synthesis and heat shock proteins. The transcriptional inhibition of key enzymes related to energy metabolism implied that 30 °C stress may lead to the dysfunction of energy metabolism in parent E. sinensis. Meanwhile, parent E. sinensis also enhanced the expression of ferritin and phospholipase D at translational level, and the glutathione s-transferase and heat shock protein 70 at both transcriptional and translational levels, speculating that parent E. sinensis can strengthen antioxidant and immune capacity to resist oxidative stress under 30 °C stress. This study elucidated the potential molecular mechanism in response to heat stress of parent E. sinensis hepatopancreas. The preliminary selection of heat tolerance genes or proteins in E. sinensis can provide a reference for the population prediction and the study of evolutionary mechanism under heat stress in crabs.


Assuntos
Proteínas de Artrópodes , Braquiúros , Resposta ao Choque Térmico , Hepatopâncreas , Proteômica , Animais , Hepatopâncreas/metabolismo , Braquiúros/fisiologia , Braquiúros/genética , Braquiúros/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Transcriptoma , Metabolismo Energético , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteoma , Multiômica
2.
Fish Shellfish Immunol ; 142: 109143, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827249

RESUMO

Pattern recognition receptors (PRRs) play a crucial role in the recognition and activation of innate immune responses against invading microorganisms. This study characterizes a novel C-type lectin (CTL), SpccCTL. The cDNA sequence of SpccCTL has a full length of 1744 bp encoding a 338-amino acid protein. The predicted protein contains a signal peptide, a coiled-coil (CC) domain, and a CLECT domain. It shares more than 50 % similarity with a few CTLs with a CC domain in crustaceans. SpccCTL is highly expressed in gills and hemocytes and upregulated after MCRV challenge, suggesting that it may be involved in antiviral immunity. Recombinant SpccCTL (rSpccCTL) as well as two capsid proteins of MCRV (VP11 and VP12) were prepared. Pre-incubating MCRV virions with rSpccCTL significantly suppresses the proliferation of MCRV in mud crabs, compared with the control (treatment with GST protein), and the survival rate of mud crabs is also significantly decreased. Knockdown of SpccCTL significantly facilitates the proliferation of MCRV in mud crabs. These results reveal that SpccCTL plays an important role in antiviral immune response. GST pull-down assay result shows that rSpccCTL interacts specifically with VP11, but not to VP12. This result is further confirmed by a Co-IP assay. In addition, we found that silencing SpccCTL significantly inhibits the expression of four antimicrobial peptides (AMPs). Considering that these AMPs are members of anti-lipopolysaccharide factor family with potential antiviral activity, they are likely involved in immune defense against MCRV. Taken together, these findings clearly demonstrate that SpccCTL can recognize MCRV by binding viral capsid protein VP11 and regulate the expression of certain AMPs, suggesting that SpccCTL may function as a potential PRR playing an essential role in anti-MCRV immunity of mud crab. This study provides new insights into the antiviral immunity of crustaceans and the multifunctional characteristics of CTLs.


Assuntos
Braquiúros , Animais , Proteínas de Transporte/genética , Proteínas Virais/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Imunidade Inata/genética , Sinais Direcionadores de Proteínas/genética , Proteínas de Artrópodes , Filogenia
3.
J Invertebr Pathol ; 201: 107988, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657756

RESUMO

The microsporidian Enterocytozoon hepatopenaei from Penaeus vannamei (EHPPv) was redescribed on the basis of spore morphology, life cycle, pathology, and molecular character. Compared with the Enterocytozoon hepatopenaei isolated from Penaeus monodon (EHPPm), described by Tourtip et al. in 2009, new features were found in EHPPv. Electron microscopy demonstrated that EHPPv was closely associated with the nucleus of host cell. The merogony and sporogony phages were in direct contact with the cytoplasm of host cells, whereas some of the sporoblasts and the spores were surrounded by the interfacial envelope. Mature spores of EHPPv were oval and monokaryotic, measuring 1.65 ± 0.15 µm × 0.92 ± 0.05 µm. Spores possessed many polyribosomes around a bipartite polaroplast and the polar filament with 4-5 coils in two rows. Phylogenetic analyses showed all Enterocytozoon hepatopenaei isolates shared a common ancestor. Based on the morphological and molecular analyses, we propose the establishment of a new genus Ecytonucleospora and transferring Enterocytozoon hepatopenaei to the genus Ecytonucleospora, retaining the specific epithet hepatopenaei that Tourtip et al. proposed in recognition of their first research, as the new combination Ecytonucleospora hepatopenaei n. comb. Furthermore, it was suggested Enterospora nucleophila, Enterocytozoon sp. isolate RA19015_21, and Enterocytozoon schreckii be assigned into this new genus.


Assuntos
Apansporoblastina , Enterocytozoon , Microsporídios , Penaeidae , Animais , Filogenia , Reação em Cadeia da Polimerase
4.
Cell Commun Signal ; 21(1): 104, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158899

RESUMO

Viruses have evolved various strategies to achieve early infection by initiating transcription of their own early genes via host transcription factors, such as NF-κb, STAT, and AP1. How the host copes with this immune escape has been a topic of interest. Tripartite motif (TRIM) family proteins with RING-type domains have E3 ubiquitin ligase activity and are known as host restriction factors. Trim has been reported to be associated with phagocytosis and is also believed to be involved in the activation of autophagy. Preventing the virus from entering the host cell may be the most economical way for the host to resist virus infection. The role of TRIM in the early stage of virus infection in host cells remains to be further interpreted. In the current study, a crayfish TRIM with a RING-type domain, designated as PcTrim, was significantly upregulated under white spot syndrome virus (WSSV) infection in the red swamp crayfish (Procambarus clarkii). Recombinant PcTrim significantly inhibited WSSV replication in crayfish. RNAi targeting PcTrim or blocking PcTrim with an antibody promoted WSSV replication in crayfish. Pulldown and co-IP assays showed that PcTrim can interact with the virus protein VP26. PcTrim restricts the expression level of dynamin, which is involved in the regulation of phagocytosis, by inhibiting AP1 entry into the nucleus. AP1-RNAi effectively reduced the expression levels of dynamin and inhibited host cell endocytosis of WSSV in vivo. Our study demonstrated that PcTrim might reduce early WSSV infection by binding to VP26 and then inhibiting AP1 activation, resulting in reduced endocytosis of WSSV in crayfish hemocytes. Video Abstract.


Assuntos
Astacoidea , Vírus da Síndrome da Mancha Branca 1 , Anticorpos , Autofagia , Endocitose , Fagocitose , Proteínas com Motivo Tripartido , Astacoidea/virologia , Animais
5.
Fish Shellfish Immunol ; 132: 108457, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455780

RESUMO

Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are typical pathogens of rainbow trout Oncorhynchus mykiss, and the concurrent infection of the two viruses is very common among modern trout hatcheries, which has caused huge economic losses to the rainbow trout farming industry. To prevent and control the spread of IHNV and IPNV in juvenile trout simultaneously, in this study a bivalent recombinant adenovirus vaccine with IHNV Glycoprotein (G) and IPNV VP2 genes was developed. After immunizing juvenile trout with this bivalent vaccine via the immersion route, the expression levels of IHNV G and IPNV VP2 and the representative immune genes in vaccinated and control rainbow trout were tested to evaluate the correlation of immune responses with the expression of viral genes. The neutralizing antibody level induced by this bivalent vaccine as well as the protection efficacy of the vaccine against IHNV and IPNV was also evaluated. The results showed that IHNV G and IPNV VP2 were successfully expressed in juvenile trout, and all the innate and adaptive immune genes were up-regulated. This indicated that the level of the innate and adaptive immune responses were significantly increased, which might be induced by the high expression of the two viral proteins. Compared with the controls, high levels of neutralizing antibodies against IHNV and IPNV were induced in the vaccinated trout. Besides, the bivalent recombinant adenovirus vaccine showed high protection rate against IHNV, with the relative percent survival (RPS) of 81.25%, as well as against IPNV, with the RPS of 78.95%. Taken together, our findings clearly demonstrated that replication-defective adenovirus can be developed as a qualified vector for fish vaccines and IHNV G and IPNV VP2 were two suitable antigenic genes that could induce effective immune protection against these two pathogens. This study provided new insights into developing bivalent vectored vaccines and controlling the spread of IHNV and IPNV simultaneously in juvenile trout.


Assuntos
Vacinas contra Adenovirus , Infecções por Birnaviridae , Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Vírus da Necrose Pancreática Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Vacinas Virais , Animais , Vírus da Necrose Pancreática Infecciosa/fisiologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Vacinas Sintéticas , Adenoviridae/genética , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária
6.
Fish Shellfish Immunol Rep ; 3: 100052, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36419614

RESUMO

Although human gC1qR is a multi-ligand binding protein with diverse biological functions, the functions of invertebrate gC1qR homologues remain largely unknown. In the present study, we characterized a novel gC1qR homologue, namely SpgC1qR, from mud crab Scylla paramamosain. SpgC1qR shared high identity and similar three-dimensional structure with human gC1qR. After challenge with White spot syndrome virus (WSSV), the transcripts of SpgC1qR were significantly increased, suggesting that SpgC1qR may be involved in antiviral immune response. To reveal the likely antiviral activity of SpgC1qR, the proliferation profile of WSSV in SpgC1qR-silenced crabs was examined. The result showed that knockdown of SpgC1qR by RNAi facilitated viral proliferation in vivo. This result was further confirmed by a SpgC1qR pre-incubation assay, in which pre-incubating WSSV particles with rSpgC1qR dramatically suppressed viral replication. Moreover, a GST pull-down assay revealed that SpgC1qR specifically bound to the viral envelope protein VP28. These findings clearly demonstrated that SpgC1qR specifically interacted with viral envelope protein VP28 and restricted WSSV replication, suggesting that it played a crucial role in anti-WSSV immune response of mud crab. This study provided new insights into the antiviral mechanism mediated by SpgC1qR and the biological functions of invertebrate gC1qR homologues.

7.
Front Cell Infect Microbiol ; 12: 1013016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211972

RESUMO

The microsporidian Enterocytozoon hepatopenaei (EHP) has become a critical threat to the global shrimp aquaculture industry, thus necessitating early detection by screening. Development of a rapid and accurate assay is crucial both for the active surveillance and for the assessment of shrimp with EHP infection. In the present study, a distinct strain of E. hepatopenaei (EHP Mr ) was found in Macrobrachium rosenbergii. The SWP1 gene analysis revealed it was a new genotype that differed with the common strain isolated from the Litopenaeus vannamei (EHP Lv ). A nested SWP-PCR method was modified to fix the bug that the original inner primers could not recognize the EHP Mr strain. The redesigned inner primers successfully amplified a product of 182 bp for both the EHP Mr strain and the EHP Lv strain. The new primers also had good specificity and high sensitivity, which may serve as an alternative for EHP genotyping. This study provided a method for detection of EHP in the biosecurity of Macrobrachium rosenbergii farming, and the developed protocol was proposed for the routine investigation and potential carrier screening, especially for molecular epidemiology.


Assuntos
Enterocytozoon , Palaemonidae , Animais , Primers do DNA/genética , Enterocytozoon/genética , Água Doce , Palaemonidae/genética , Reação em Cadeia da Polimerase/métodos
8.
Front Cell Infect Microbiol ; 12: 882843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601100

RESUMO

The life cycle, ultrastructure, and molecular phylogeny of a new intranuclear microsporidian, Nucleospora hippocampi n. sp., infecting the intestine of the Hippocampus erectus, were described. The histopathology revealed an extensive infection, mainly in the columnar epithelium of the intestinal mucosa layer. The enterocytes were the important target cell for Nucleospora hippocampi n. sp. infection. Transmission electron microscopy results showed that this microsporidian developed directly within the host cell nucleoplasm. In the intranuclear life cycle, the transformation from meront to sporogonial plasmodium was recognized by forming electron-dense disc structures, which were considered the polar tube precursors. The microsporidian showed the typical morphological characteristics of the family Enterocytozoonidae in the formation and development of spore organelles prior to the division of the sporogonial plasmodium. According to wet smear observation, eight spores were generally formed in a single host nucleus. Mature spores were elongated ovoids that were slightly bent and measured 1.93 × 0.97 µm. The isofilar polar tube was arranged in 7~8 coils in one row. Phylogenetic analysis of its small subunit ribosomal DNA sequences demonstrated that the parasite belonged to the Nucleospora group clade. The histological, ultrastructural, and molecular data support the emergence of a new species in the genus Nucleospora. This is the first report of Nucleospora species in Asia and threatened syngnathid fishes.


Assuntos
Apansporoblastina , Microsporídios , Smegmamorpha , Animais , Apansporoblastina/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Estágios do Ciclo de Vida , Microsporídios/genética , Microsporídios/ultraestrutura , Filogenia , Smegmamorpha/genética
9.
Animals (Basel) ; 12(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35405906

RESUMO

A shelter is a good habitat for aquatic organisms, which could aid in avoiding cannibalism and facilitate predation. Chinese Mitten Crab (Eriocheir sinensis) is an important aquaculture species with troglodytism and nocturnal habit. To clarify the preference for shelters at different developmental stages of E. sinensis, different shelters (mud, sand, grass and rocks) were selected for comparison. These results indicated that juvenile crabs had a significant preference for grass; button-sized crabs preferred to hide in mud; and the favorite shelters for parent crabs were rocks, followed by mud. E. sinensis in three stages all showed concealing behavior. The concealing behavior of juvenile crabs was the most significant, followed by button-sized and parent crabs. Additionally, E. sinensis held a low hiding rate at night but a high hiding rate during the daytime due to nocturnal habits. These findings will help to better understand the habits of E. sinensis and provide a reference for resource restoration, habitat construction and the restoration of E. sinensis.

10.
Front Immunol ; 13: 1088862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36643915

RESUMO

Toll and Toll-like receptors (TLRs) play essential roles in the innate immunity of Drosophila and mammals. Recent studies have revealed the presence of Toll-mediated immune signaling pathways in shrimp. However, the recognition and activation mechanism of Toll signaling pathways in crustaceans remain poorly understood due to the absence of key recognition molecules, such as peptidoglycan recognition proteins. Here, a novel MD2-related lipid-recognition (ML) member named PvML1 was characterized in Penaeus vannamei. We found that PvML1 shared a similar 3D structure with human MD2 that could specifically recognize lipopolysaccharides (LPS) participating in LPS-mediated TLR4 signaling. PvML1 was highly expressed in hemocytes and remarkably upregulated after Vibrio parahemolyticus challenge. Furthermore, the binding and agglutinating assays showed that PvML1 possessed strong binding activities to LPS and its key portion lipid A as well as Vibrio cells, and the binding of PvML1 with bacterial cells led to the agglutination of bacteria, suggesting PvML1 may act as a potential pathogen recognition protein upon interaction with LPS. Besides, coating V. parahemolyticus with recombinant PvML1 promoted bacterial clearance in vivo and increased the survival rate of bacterium-challenged shrimp. This result was further confirmed by RNAi experiments. The knockdown of PvML1 remarkably suppressed the clearance of bacteria in hemolymph and decreased the survival rate of infected shrimp. Meanwhile, the silencing of PvML1 severely impaired the expression of a few antimicrobial peptides (AMPs). These results demonstrated the significant correlation of bacterial clearance mediated by PvML1 with the AMP expression. Interestingly, we found that PvML1 interacted with the extracellular region of PvToll2, which had been previously shown to participate in bacterial clearance by regulating AMP expression. Taken together, the proposed antibacterial model mediated by PvML1 might be described as follows. PvML1 acted as a potential recognition receptor for Gram-negative bacteria by binding to LPS, and then it activated PvToll2-mediated signaling pathway by interacting with PvToll2 to eliminate invading bacteria through producing specific AMPs. This study provided new insights into the recognition and activation mechanism of Toll signaling pathways of invertebrates and the defense functions of ML members.


Assuntos
Infecções Bacterianas , Crustáceos , Vibrio parahaemolyticus , Animais , Humanos , Infecções Bacterianas/veterinária , Crustáceos/imunologia , Crustáceos/microbiologia , Imunidade Inata , Invertebrados , Lipopolissacarídeos , Receptores Toll-Like/metabolismo
11.
Int J Biol Macromol ; 193(Pt B): 2173-2182, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780895

RESUMO

Although class B scavenger receptors (SR-Bs) in mammals are multifunctional molecules, the functions of SR-Bs in invertebrates remain largely unknown. In this study, we characterized an SR-B homolog, namely SpSR-B2, from Scylla paramamosain. SpSR-B2 shared high similarity with mammalian SR-Bs, and exhibited specific binding activity to ac-LDL, indicating that it may be a new member of SR-B class in invertebrates. SpSR-B2 was upregulated after challenge with white spot syndrome virus (WSSV) or bacteria. Binding assays showed that SpSR-B2 specifically interacted with WSSV envelope protein VP24. Besides, SpSR-B2 could bind to all tested bacterial cells and agglutinate these bacteria. SpSR-B2 also exhibited a strong binding activity to LPS but weak binding activities to other tested polysaccharides. These findings indicated that SpSR-B2 was a potential recognition molecule for viral protein VP24 and bacterial LPS. Knockdown of SpSR-B2 resulted in dramatically decreased expressions of certain antimicrobial peptides (AMPs), and overexpression of SpSR-B2 led to the increased expression of the AMP of SpALF2, suggesting that SpSR-B2 could regulate the expression of AMPs. Taken together, this study revealed that SpSR-B2 functioned as a potential pattern recognition receptor participating in antiviral and antibacterial immunity, and provided new insights into the immune functions of invertebrate SR-Bs.


Assuntos
Antibacterianos/imunologia , Antivirais/imunologia , Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Peptídeos Antimicrobianos/imunologia , Bactérias/imunologia , Imunidade/imunologia , Lipopolissacarídeos/imunologia , Filogenia , Vírus da Síndrome da Mancha Branca 1/imunologia
12.
Mar Drugs ; 19(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34677443

RESUMO

Crustins are cysteine-rich cationic antimicrobial peptides with diverse biological functions including antimicrobial and proteinase inhibitory activities in crustaceans. Although a few crustins reportedly respond to white spot syndrome virus (WSSV) infection, the detailed antiviral mechanisms of crustins remain largely unknown. Our previous research has shown that SpCrus2, from mud crab Scylla paramamosain, is a type II crustin containing a glycine-rich region (GRR) and a cysteine-rich region (CRR). In the present study, we found that SpCrus2 was upregulated in gills after WSSV challenge. Knockdown of SpCrus2 by injecting double-stranded RNA (dsSpCrus2) resulted in remarkably increased virus copies in mud crabs after infection with WSSV. These results suggested that SpCrus2 played a critical role in the antiviral immunity of mud crab. A GST pull-down assay showed that recombinant SpCrus2 interacted specifically with WSSV structural protein VP26, and this result was further confirmed by a co-immunoprecipitation assay with Drosophila S2 cells. As the signature sequence of type II crustin, SpCrus2 GRR is a glycine-rich cationic polypeptide with amphipathic properties. Our study demonstrated that the GRR and CRR of SpCrus2 exhibited binding activities to VP26, with the former displaying more potent binding ability than the latter. Interestingly, pre-incubating WSSV particles with recombinant SpCrus2 (rSpCrus2), rGRR, or rCRR inhibited virus proliferation in vivo; moreover, rSpCrus2 and rGRR possessed similar antiviral abilities, which were much stronger than those of rCRR. These findings indicated that SpCrus2 GRR contributed largely to the antiviral ability of SpCrus2, and that the stronger antiviral ability of GRR might result from its stronger binding activity to the viral structural protein. Overall, this study provided new insights into the antiviral mechanism of SpCrus2 and the development of new antiviral drugs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Proteínas de Artrópodes/farmacologia , Crustáceos , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/química , Organismos Aquáticos , Proteínas de Artrópodes/química , Glicina/metabolismo , Testes de Sensibilidade Microbiana , Distribuição Aleatória
13.
J Invertebr Pathol ; 186: 107665, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520799

RESUMO

Penaeus vannamei is the most economically important species of shrimp cultured worldwide. Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that severely affects the growth and development of shrimps. In this study, the transcriptome differences between EHP-infected and uninfected shrimp were investigated through next-generation sequencing. The unigenes were assembled with the reads from all the four libraries. The differentially expressed genes (DEGs) of intestines and hepatopancreas were analyzed. There were 2,884 DEGs in the intestines and 2,096 DEGs in the hepatopancreas. The GO and KEGG enrichment analysis indicated that DEGs were significantly enriched in signaling pathways associated with nutritional energy metabolism and mobilizing autoimmunity. Moreover, the results suggested the downregulation of key genes in energy synthesis pathways contributed greatly to shrimp growth retardation; the upregulation of immune-related genes enhanced the resistance of shrimp against EHP infection. This study provided identified genes and pathways associated with EHP infection revealing the molecular mechanisms of growth retardation.


Assuntos
Enterocytozoon/fisiologia , Penaeidae/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hepatopâncreas/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Intestinos/parasitologia , Penaeidae/parasitologia
14.
Curr Microbiol ; 78(6): 2291-2297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860342

RESUMO

The Chinese mitten crab, Eriocheir sinensis, is an economically valuable aquaculture species. Prior to sale, farmed crabs are often fattened with pellet feed or wild fish. In this study, PacBio Sequel sequencing was used to determine the bacterial flora in the intestinal tracts and gill tissues of male and female E. sinensis fed with various diets. The flora was then compared with the microorganisms found in environmental samples. The results showed that Proteobacteria was the dominant phylum in both tissue and environmental samples. The relative abundances of Proteobacteria in the water grass surface flushing samples and water grass samples were the highest, at up to 95.68% and 67.85%, respectively. Beyond that, Bacteroidetes, Firmicutes, and Tenericutes were the dominant phyla (>1%) in the intestinal samples, whereas Bacteroidetes and Actinobacteria were the dominant phyla in the gills. In addition, different environment samples contained diverse bacterial phyla, indicating some differences in the community composition between the different sample groups. Heat map clustering and principal coordinate plot analyses indicated that intestinal samples, crab gill samples, and environmental samples clustered together, respectively. Furthermore, an unweighted pair-group method with arithmetic mean technique confirmed that the intestinal and gill samples of crabs with different diets separately clustered together, suggesting the microbial assemblages of the same tissues share a greater similarity than those from crabs of different sex and eating different diets. What's more, biomarker bacteria (LDA ≥ 4) from the different groups were identified. Pathogenic agents from the genus Aeromonas were abundant in the intestinal samples of crabs fed with pellet feed, and Vibrio species were prevalent in the intestinal samples of crabs fed with wild fishes.


Assuntos
Microbioma Gastrointestinal , Brânquias , Animais , Bactérias/genética , China , Dieta , Feminino , Masculino , Lagoas
15.
Fish Shellfish Immunol ; 97: 382-389, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841691

RESUMO

Streptococcus agalactiae and Streptococcus iniae are major bacterial pathogens of tilapia that can cause high mortality concomitant with large economic losses to aquaculture. Although development of vaccines using formalin-killed bacteria to control these diseases has been attempted, the mechanism of immunity against streptococcal infections and the cross-protective ability of these two bacteria remains unclear. To explore the immunological role of these vaccines, we compared the immune responses of tilapia after immunization with both vaccines and compared the relative percent survival (RPS) and cross-immunization protection of tilapia after separate infection with S. agalactiae and S. iniae. All results revealed that vaccinated fish had significantly higher (P < 0.05) levels of specific antibodies than control fish 14 days post secondary vaccination (PSV) and 7 days post challenge. In vaccinated fish, the mRNA expression of interleukin-8 (IL-8), interleukin-12 (IL-12), caspase-3 (C-3), tumour necrosis factor (TNF), and interferon (IFN) was significantly up regulated (P < 0.05) in the head kidney after immunized; similar results were found for IL-8, TNF and IFN in the posterior kidney, meanwhile the expression levels of C-3 and IFN were significantly increased (P < 0.05) in the spleen of vaccinated fish. Additionally, the levels of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in vaccinated fish were improved at different degree when compared to the control fish. These results showed that vaccination with formalin-killed cells (FKCs) of either S. agalactiae or S. iniae conferred protection against infection by the corresponding pathogen in Nile tilapia, resulting in RPS values of 92.3% and 91.7%, respectively. Furthermore, cross-protection was observed, as the S. agalactiae FKC vaccine protected fish from S. iniae infection, and vice versa. These results suggested that the S. agalactiae and S. iniae FKC vaccines can induce immune responses and generate excellent protective effects in Nile tilapia.


Assuntos
Ciclídeos , Proteção Cruzada , Doenças dos Peixes/prevenção & controle , Vacinas Estreptocócicas/farmacologia , Streptococcus agalactiae/imunologia , Streptococcus iniae/imunologia , Vacinação/veterinária , Animais , Anticorpos Antibacterianos/sangue , Imunidade Humoral , Imunidade Inata , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/classificação
16.
Dev Comp Immunol ; 103: 103529, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669309

RESUMO

The myeloid differentiation protein 2 (MD2)-related lipid-recognition (ML) proteins display diverse biological functions in host immunity and lipid metabolism by interacting with different lipids. Human MD2, an indispensable accessory protein in TLR4 signaling pathway, specifically recognizes lipopolysaccharides (LPS), thereby leading to the activation of TLR4 signaling pathway to produce many effectors that participate in inflammatory and immuneresponses against Gram-negative bacteria. Toll and immune deficiency (IMD) pathways are first characterized in Drosophila and are reportedly present in crustaceans, but the recognition and activation mechanism of these signaling pathways in crustaceans remains unclear. In the present study, a novel ML protein was characterized in mud crab (Scylla paramamosain) and designated as SpMD2. The complete SpMD2 cDNA sequence is 1114 bp long with a 465 bp open reading frame; it encodes a protein that contains 154 amino acids (aa). In the deduced protein, a signal peptide (1-21 aa residues) and a ML domain (43-151 aa residues) were predicted. SpMD2 shared a similar three-dimensional structure and a close evolutionary relationship with human MD2. SpMD2 was highly expressed in gills, hemocytes, intestine, and hepatopancreas and was upregulated in gills and hemocytes after challenges with bacteria, thereby suggesting its involvement in antibacterial defense. Western blot assay showed that SpMD2 possesses strong binding activities to different bacteria and two fungi. ELISA demonstrated that SpMD2 exhibits binding abilities to LPS, lipid A, peptidoglycan (PGN), and lipoteichoic acid (LTA). Its binding ability to LPS and lipid A were stronger than to PGN or LTA, implying that SpMD2 was an important LPS-binding protein in mud crab. Bacterial clearance assay revealed that the pre-incubation of Vibrio parahemolyticus with SpMD2 facilitates bacterial clearance in vivo and that knockdown of SpMD2 dramatically suppresses the bacterial clearance and decreases the expression of several antimicrobial peptides (AMPs). Furthermore, SpMD2 overexpression could enhance the promoter activity of SpALF2. These results revealed that SpMD2 affects bacterial clearance by regulating AMPs. Thus, by binding to LPS and by regulating AMPs, SpMD2 may function as a potential receptor, which is involved in the recognition and activation of a certain immune signaling pathway against Gram-negative bacteria. This study provides new insights into the diverse functions of ML proteins and into the antibacterial mechanisms of crustaceans.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Receptores de Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Artrópodes/genética , Receptores de Lipopolissacarídeos/genética , Antígeno 96 de Linfócito/genética , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus/imunologia
17.
Mar Pollut Bull ; 150: 110592, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31699498

RESUMO

Antimicrobial resistance genes in aquaculture environments have attracted wide interest, since these genes pose a severe threat to human health. This study aimed to explore the possible mechanisms of the ciprofloxacin resistance of Vibrio parahaemolyticus (V. parahaemolytiucs) in aquaculture environments, which may have been affected by the biofertilizer utilization in China. Plasmid-mediate quinolone resistance (PMQR) genes, representative (fluoro)quinolones (FNQs), and ciprofloxacin-resistance isolates in biofertilizer samples were analyzed. The significantly higher abundance of oqxB was alarming. The transferable experiments and Southern blot analysis indicated that oqxB could spread horizontally from biofertilizers to V. parahaemolyticus, and two (16.7%) trans-conjugants harboring oqxB were provided by 12 isolates that successfully produced OqxB. To the best of our knowledge, this study is the first to report PMQR genes dissipation from biofertilizers to V. parahaemolyticus in aquaculture environments. The surveillance, monitoring and control of PMQR genes in biofertilizers are warranted for seafood safety and human health.


Assuntos
Aquicultura , Farmacorresistência Bacteriana/genética , Fluoroquinolonas , Vibrio parahaemolyticus/fisiologia , Antibacterianos , China , Fertilizantes , Humanos , Plasmídeos
18.
Dev Comp Immunol ; 105: 103582, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31874194

RESUMO

Laccases (Lacs) are copper-containing oxidase enzymes that are found in various plants, fungi, and microorganisms. For invertebrates, particularly insects and crustaceans, Lacs have been shown to be involved in immune responses. In shrimp, a Lac gene has been cloned and functionally characterized, which revealed that it is involved in shrimp anti-pathogen infection. In the present study, a novel Lac gene (LvLac2) was cloned from Litopenaeus vannamei. Real-time RT-PCR analysis showed that LvLac2 is induced by white spot syndrome virus (WSSV)- or Vibrio alginolyticus infection. In addition, the downregulated expression of LvLac2 decreased the cumulative mortality of WSSV- or V. alginolyticus infected shrimps. Moreover, LvLac2 is also induced by oxidative stress. Knocking down the expression of LvLac2 decreased the severity of hepatopancreatic injury caused by oxidative stress, as well as reduced the cumulative shrimp mortality during oxidative stress. Furthermore, gene reporter assays showed that the expression of LvLac2 is regulated by NF-E2-related factor 2, which is the key transcription factor of the oxidative stress response signaling pathway. Our study revealed that LvLac2 not only participates in immune responses against infections in L. vannamei but is also involved in oxidative stress responses.


Assuntos
Proteínas de Artrópodes/genética , Infecções por Vírus de DNA/imunologia , Hepatopâncreas/imunologia , Lacase/genética , Penaeidae/imunologia , Vibrioses/imunologia , Vibrio alginolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Técnicas de Silenciamento de Genes , Imunidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Regulação para Cima
19.
Fish Shellfish Immunol ; 97: 257-267, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31843702

RESUMO

Lysin motif (LysM)-containing proteins function as pattern-recognition receptors in plants to recognize different N-acetylglucosamine-containing ligands, thereby triggering specific defense responses against pathogens. However, the biological functions of these proteins in animals remain unclear. In this study, we characterized a novel LysM protein, designated as SpLysMD3, in mud crab Scylla paramamosain. The cDNA sequence of SpLysMD3 had 1058 bp with an open reading frame of 840 bp encoding a protein with 279 amino acid residues. The deduced protein contained a LysM domain and a transmembrane region. SpLysMD3 was highly expressed in gills, intestine, muscle, and hemocytes and upregulated after challenges with bacteria, suggesting that it may be involved in antibacterial defense. Binding assay showed that SpLysMD3 possessed specific binding activities to all tested microorganisms as well as bacterial cell wall components lipopolysaccharide (LPS) and peptidoglycan (PGN), indicating that SpLysMD3 was an important LPS- and PGN-binding protein in mud crab. Bacterial clearance assay revealed that coating bacteria with SpLysMD3 accelerated bacterial clearance in vivo. The promotion of bacterial clearance by SpLysMD3 was further determined by using SpLysMD3-silenced crabs injected with S. aureus or V. parahemolyticus. Silencing SpLysMD3 dramatically suppressed the bacterial clearance. Meanwhile, knockdown of SpLysMD3 also severely impaired the expression of a specific set of antimicrobial peptides (AMPs); moreover, SpLysMD3 overexpression can enhance the promoter activity of SpALF2. These results suggested that SpLysMD3 affected bacterial clearance by regulating AMPs. Collectively, all the results demonstrated that SpLysMD3 may function as a potential receptor involved in innate immunity by binding to LPS and PGN and by regulating AMPs to eliminate invading pathogen. This study provided new insights into the biological functions of LysM proteins in animals and the mechanisms underlying the antibacterial activity of crustaceans.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Filogenia , Staphylococcus aureus/fisiologia , Vibrio parahaemolyticus/fisiologia
20.
Front Immunol ; 10: 1992, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507600

RESUMO

Scavenger receptors are cell surface membrane-bound receptors that typically bind multiple ligands and promote the removal of endogenous proteins and pathogens. In this study, we characterized a novel scavenger receptor-like protein, namely, SpBark. SpBark was upregulated in hemocytes after challenges with bacteria, suggesting that it might be involved in antibacterial defense. SpBark is a type I transmembrane protein with four extracellular domains, including three scavenger receptor cysteine-rich domains (SRCRDs) and a C-type lectin domain (CTLD). Western blot assay showed that SpBark CTLD possessed a much stronger binding activity to tested microbes than the three SRCRDs. It also exhibited apparent binding activities to lipopolysaccharide (LPS) and acetylated low-density lipoprotein (ac-LDL), whereas the other SRCRDs showed much lower or no binding activities to these components. Agglutination activities were observed in the presence of Ca2+ by incubating microorganisms with SpBark CTLD instead of SRCRDs. These results suggested that SpBark CTLD was the major binding site for ac-LDL and LPS. Coating Vibrio parahemolyticus with SpBark CTLD promoted bacterial clearance in vivo. This finding indicated that SpBark might participate in the immune defenses against Gram-negative bacteria through a certain mechanism. The promotion of bacterial clearance by SpBark was further determined using SpBark-silenced crabs injected with V. parahemolyticus. SpBark knockdown by injection of SpBark dsRNA remarkably suppressed the clearance of bacteria in hemolymph. Meanwhile, it also severely restrained the phagocytosis of bacteria. This finding suggested that SpBark could modulate the phagocytosis of bacteria, and the promotion of bacterial clearance by SpBark was closely related to SpBark-mediated phagocytosis activity. The likely mechanism of bacterial clearance mediated by SpBark was as follows: SpBark acted as a pattern recognition receptor, which could sense and bind to LPS on the surface of invading bacteria with its CTLD in hemolymph. The binding to LPS made the bacteria adhere to the surface of hemocytes. This process would facilitate phagocytosis of the bacteria, resulting in their removal. This study provided new insights into the hemocyte phagocytosis mechanisms of invertebrates and the multiple biological functions of Bark proteins.


Assuntos
Proteínas de Artrópodes/imunologia , Infecções Bacterianas/imunologia , Braquiúros/imunologia , Hemócitos/imunologia , Invertebrados/imunologia , Fagocitose/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/imunologia , Lectinas Tipo C/imunologia , Lipopolissacarídeos/imunologia , Alinhamento de Sequência , Vibrio parahaemolyticus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...