Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(25): eadn2707, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896618

RESUMO

Nanoconfined catalysts enhance stabilization of reaction intermediates, facilitate electron transfer, and safeguard active centers, leading to superior electrocatalytic activity, particularly in CO2 reduction reactions (CO2RR). Despite their effectiveness, crafting nanoconfined catalysts is challenging due to unclear formation mechanisms. In this study, we introduce an electrochemical method to grow Pd clusters within the interlayers of two-dimensional black phosphorus, creating Pd cluster-intercalated black phosphorus (Pd-i-BP) as an electrocatalyst. Using in situ electrochemical liquid phase transmission electron microscopy (EC-TEM), we revealed the synthesis mechanism of Pd-i-BP, involving electrochemically driven Pd ion intercalation followed by reduction within the BP layers. The Pd-i-BP electrocatalyst exhibits exemplary CO2-to-formate conversion, achieving 90% Faradaic efficiency for formate production, owing to its distinct nanoconfined structure that stabilizes intermediates and enhances electron transfer. Density functional theory (DFT) calculations underscore the structural benefits for enhancing intermediate adsorption and catalyzing the reaction. Our insights deepen understanding of nanoconfined material synthesis, promising advanced, high-efficiency catalysts.

2.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842926

RESUMO

Two-dimensional (2D) Fe3Sn2, which is a room-temperature ferromagnetic kagome metal, has potential applications in spintronic devices. However, the systematic synthesis and magnetic study of 2D Fe3Sn2 single crystals have rarely been reported. Here we have synthesized 2D hexagonal and triangular Fe3Sn2 nanosheets by controlling the amount of FeCl2 precursors in the chemical vapor deposition (CVD) method. It is found that the hexagonal Fe3Sn2 nanosheets exist with Fe vacancy defects and show no obvious coercivity. While the triangular Fe3Sn2 nanosheet has obvious hysteresis loops at room temperature, its coercivity first increases and then remains stable with an increase in temperature, which should result from the competition of the thermal activation mechanism and spin direction rotation mechanism. A first-principles calculation study shows that the Fe vacancy defects in Fe3Sn2 can increase the distances between Fe atoms and weaken the ferromagnetism of Fe3Sn2. The resulting 2D Fe3Sn2 nanosheets provide a new choice for spintronic devices.

3.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38869532

RESUMO

Defect manipulation in metal oxide is of great importance in boosting catalytic performance for propane oxidation. Herein, a selective atom removal strategy was developed to construct a defective manganese oxide catalyst, which involved the partial etching of a Mg dopant in MnOx. The resulting MgMnOx-H catalysts exhibited superior low-temperature catalytic activity (T50 = 185 °C, T90 = 226 °C) with a propane conversion rate of 0.29 µmol·gcat.-1·h-1 for the propane oxidation reaction, which is 4.8 times that of pristine MnOx. Meanwhile, a robust hydrothermal stability was guaranteed at 250 °C for 30 h of reaction time. The comprehensive experimental characterizations revealed that the catalytic performance improvement was closely related to the defective structures including the abundant (metal and oxygen) vacancies, distorted crystals, valence imbalance, etc., which prominently weakened the Mn-O bond and stimulated the mobility of surface lattice oxygen, leading to the elevation in the intrinsic oxidation activity. This work exemplifies the significance of defect engineering for the promotion of the oxidation ability of metal oxide, which will be valuable for the further development of efficient non-noble metal catalysts for propane oxidation.

4.
World J Psychiatry ; 14(2): 225-233, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464777

RESUMO

Depression is a common mental health disorder. With current depression detection methods, specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment. Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized. Specialized physicians usually require extensive training and experience to capture changes in these features. Advancements in deep learning technology have provided technical support for capturing non-biological markers. Several researchers have proposed automatic depression estimation (ADE) systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening. This article summarizes commonly used public datasets and recent research on audio- and video-based ADE based on three perspectives: Datasets, deficiencies in existing research, and future development directions.

5.
Mater Horiz ; 11(8): 2032-2040, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38372566

RESUMO

Exploration of high-performance catalysts holds great importance for on-demand H2 production from ammonia borane (AB) hydrolysis. In this work, a hollow bowl-like porous carbon-anchored Ru-MgO hetero-structured nano-pair with high-intensity interfaces is made, using a tailored design approach. Consequently, the optimized catalyst shows AB hydrolysis activity with a turnover frequency value of 784 min-1 in aqueous media and 1971 min-1 in alkaline solvent. Robust durability is also achieved, with slight deactivation after a ten-cycle test. Combined experimental and theoretical calculations validate the positive function of the interface between Ru and MgO for facilitating H transfer and boosting water activation, thus leading to improved AB hydrolysis performance. This study could be valuable in guiding the upgradation of Ru catalytic systems, to advance their practical applications.

6.
Comput Biol Med ; 168: 107805, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064845

RESUMO

Depression is a prevalent mental disorder worldwide. Early screening and treatment are crucial in preventing the progression of the illness. Existing emotion-based depression recognition methods primarily rely on facial expressions, while body expressions as a means of emotional expression have been overlooked. To aid in the identification of depression, we recruited 156 participants for an emotional stimulation experiment, gathering data on facial and body expressions. Our analysis revealed notable distinctions in facial and body expressions between the case group and the control group and a synergistic relationship between these variables. Hence, we propose a two-stream feature fusion model (TSFFM) that integrates facial and body features. The central component of TSFFM is the Fusion and Extraction (FE) module. In contrast to conventional methods such as feature concatenation and decision fusion, our approach, FE, places a greater emphasis on in-depth analysis during the feature extraction and fusion processes. Firstly, within FE, we carry out local enhancement of facial and body features, employing an embedded attention mechanism, eliminating the need for original image segmentation and the use of multiple feature extractors. Secondly, FE conducts the extraction of temporal features to better capture the dynamic aspects of expression patterns. Finally, we retain and fuse informative data from different temporal and spatial features to support the ultimate decision. TSFFM achieves an Accuracy and F1-score of 0.896 and 0.896 on the depression emotional stimulus dataset, respectively. On the AVEC2014 dataset, TSFFM achieves MAE and RMSE values of 5.749 and 7.909, respectively. Furthermore, TSFFM has undergone testing on additional public datasets to showcase the effectiveness of the FE module.


Assuntos
Depressão , Rios , Humanos , Depressão/psicologia , Emoções/fisiologia , Face , Expressão Facial
7.
J Sci Food Agric ; 104(1): 196-206, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555248

RESUMO

BACKGROUND: Schisandra chinensis (Turcz.) Baill, a fruit utilized in traditional Chinese medicine (TCM), has a long history of medical application. It has been used to treat diseases of the gastrointestinal tract. Schisandra chinensis (Turcz.) Baill polysaccharide (SACP) is an important biologically active ingredient that has been shown to have a variety of beneficial effects including immune regulation and anti-oxidative properties. Ulcerative colitis (UC) is a complicated gastrointestinal inflammatory disease. We explore the protective effect of SACP against UC. RESULTS: Schisandra chinensis (Turcz.) Baill polysaccharide significantly reduced the disease activity index (DAI) and levels of myeloperoxidase(MPO) and malondialdehyde (MDA) in colonic tissue. It also alleviated weight loss and histopathological damage of mice. The expression of MUC2 and occludin proteins was increased and the barrier function of the colonic mucosa was enhanced by SACP treatment. NF-κB pathway activation was also inhibited and the production of pro-inflammatory cytokines was decreased whereas anti-inflammatory cytokines were increased. 16SrDNA sequencing of fecal flora showed that SACP increased the abundance of Muribaculaceaeunclassified, LachnospiraceaeNK4A136group and reduced the abundance of Bacteroides and Erysipelatoclostridium. CONCLUSION: Schisandra chinensis (Turcz.) Baill polysaccharide can protect against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis in mice. © 2023 Society of Chemical Industry.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Schisandra , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/metabolismo , Schisandra/química , Schisandra/metabolismo , Polissacarídeos , Colo/metabolismo , Citocinas/metabolismo , Cloreto de Sódio , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
8.
J Hazard Mater ; 452: 131319, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004446

RESUMO

Defects engineering in metal oxide is an important avenue for the promotion of VOCs catalytic oxidation. Herein, the influence of crystal facet of Co3O4 is first investigated for the propane oxidation. An intelligent Cu doping is subsequently performed in the most active (110) facet exposed Co3O4 catalyst. The optimized Cu-Co3O4-110-3 catalyst exhibits a prominently enhanced activity with propane conversion rate of 1.9 µmol g-1 s-1 at reaction temperature of 192 °C and the propane mass space velocity of 60,000 mL g-1 h-1, about 2.4 times that of the pristine Co3O4. Systematic experimental characterizations (XAS, EPR, Raman, TPR, XPS, etc.) combined with density functional theory calculations point out that the incorporated Cu could increase the electrophilicity of nearby O atom and implant beneficial defect structures (lattice distortion, coordination unsaturation, abundant oxygen vacancies, etc.), which could significantly activate Co-O bond in Co3O4, leading to the facilitated generation of active oxygen species as well as promoted oxidation ability. This study could set an illuminating paradigm for the boost of the intrinsic oxidation activity by the precise defect construction in Co3O4 catalyst, which will help drive ahead the pursuit of non-precious metal catalyst for VOCs abatement.

9.
Small ; 18(42): e2203545, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36149033

RESUMO

Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption.

10.
Nanoscale ; 14(28): 10060-10066, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791869

RESUMO

Anisotropic assembly of nanomaterials into hollow structures is an attractive technique in biomedicine and biosensing. Commonly used polymer materials are easy to assemble yet it is hard to form anisotropic morphologies. Here in this work, we successfully prepared a novel gold nanocapsule with an anisotropic ellipsoidal shape and cavity structure by the self-assembly of ultrathin Au nanowires. The assembly mechanism is further studied by tuning the assembly conditions such as nanowire concentration, solvent composition, and temperature. It is found that the controlling forces of the nanowire assembly process are mainly the symmetric interfacial tension and the asymmetric nanowire deformation potential, which contribute together to result in anisotropic nanocapsules. Finally, the obtained Au nanocapsules were used as nanocarriers to load pyrene as a model drug, showing great drug loading ability and pH-responsive drug release behavior. We believe that this unique anisotropic assembly product will bring new insights into nanostructure design and soft matter research.

11.
J Colloid Interface Sci ; 626: 740-751, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820209

RESUMO

Urea electrooxidation with favorable thermodynamic potential is highly anticipated but suffering from sluggish kinetics. Deciphering the activity origin and achieving rational structure design are pivotal for developing highly efficient electrocatalyst for urea oxidation reaction (UOR). Herein, nitrogen penetrated nickel nanoparticles confined in carbon nanotubes (Ni-NCNT) is successfully achieved to drive UOR. Active origin of Ni-NCNT is decoded to be the in-situ generated Ni2+δO(OH)ads according to comprehensive analysis. The electrophilic Ni2+δ and protophilic OHads could targeted capture O and H atoms from urea, respectively, achieving molecule activation and accelerating the subsequent proton coupled electron transfer reactions. Nitrogen penetration is identified to promote prior formation of Ni2+δO(OH)ads and push up the d band center of Ni-NCNT, enhancing urea adsorption and subsequent molecule cleavage reactions. As a result, Ni-NCNT exhibits superior UOR performance. This work supplies valuable insights for the rational design and construction of efficient nickel-based catalyst for driving UOR.

12.
Front Vet Sci ; 9: 850466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711812

RESUMO

The aim of this study was to determine the mobile genetic elements involved in the horizontal transfer of erm(T) in Enterococcus faecalis, and its transmission ability in heterologous hosts. A total of 159 erythromycin-resistant enterococci isolates were screened for the presence of macrolide resistance genes by PCR. Whole genome sequencing for erm(T)-carrying E. faecalis E165 was performed. The transmission ability in heterologous hosts was explored by conjugation, transformation, and fitness cost. The erm(T) gene was detected only in an E. faecalis isolate E165 (1/159), which was located on a 4,244-bp small plasmid, designed pE165. Using E. faecalis OG1RF as the recipient strain, pE165 is transferable. Natural transformation experiments using Streptococcus suis P1/7 and Streptococcus mutans UA159 as the recipients indicated it is transmissible, which was also observed by electrotransformation using Staphylococcus aureus RN4220 as a recipient. The erm(T)-carrying pE165 can replicate in the heterologous host including E. faecalis OG1RF, S. suis P1/7, S. mutans UA159, and S. aureus RN4220 and conferred resistance to erythromycin and clindamycin to all hosts. Although there is no disadvantage of pE165 in the recipient strains in growth curve experiments, all the pE165-carrying recipients had a fitness cost compared to the corresponding original recipients in growth competition experiments. In brief, an erm(T)-carrying plasmid was for the first time described in E. faecalis and as transmissible to heterologous hosts.

13.
R Soc Open Sci ; 9(1): 210790, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242341

RESUMO

Wood is the main material used for musical instrument soundboard fabrication, for practical and cultural reasons. As a natural material, however, wood is easily degraded due to moisture or fungal corrosion. Most traditional wood protection methods were devised for structural materials, and may thus not be suitable for application in musical instrument soundboard materials. In the current study, a novel nanomaterial-based modification method was applied to wood. The surface of wood was coated with polyurethane and MgAl-layered double hydroxide nanosheets after a convenient impregnation process. The modified wood exhibited improved hydrophobicity and mould-resistance, while maintaining its acoustic properties. This modified wood may facilitate the construction of soundboards with longer lifespans.

14.
Small ; 18(3): e2104293, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738716

RESUMO

Antimony sulfide is attracting enormous attention due to its remarkable theoretical capacity as anode for sodium-ion batteries (SIBs). However, it still suffers from poor structural stability and sluggish reaction kinetics. Constructing covalent chemical linkage to anchor antimony sulfide on two-dimension conductive materials is an effective strategy to conquer the challenges. Herein, Ti3 C2 -Sb2 S3 composites are successfully achieved with monodispersed Sb2S3 uniformly pinned on the surface of Ti3 C2 Tx MXene through covalent bonding of Ti-O-Sb and S-Ti. Ti3 C2 Tx MXene serves as both charge storage contributor and flexible conductive buffer to sustain the structural integrity of the electrode. Systematic analysis indicates that construction of efficient interfacial chemical linkage could bridge the physical gap between Sb2S3 nanoparticles and Ti3 C2 Tx MXene, thus promoting the interfacial charge transfer efficiency. Furthermore, the interfacial covalent bonding could also effectively confine Sb2S3 nanoparticles and the corresponding reduced products on the surface of Ti3 C2 Tx MXene. Benefited from the unique structure, Ti3 C2 -Sb2 S3 anode delivers a high reversible capacity of 475 mAh g-1 at 0.2 A g-1 after 300 cycles, even retaining 410 mAh g-1 at 1.0 A g-1 after 500 cycles. This strategy is expected to shed more light on interfacial chemical linkage towards rational design of advanced materials for SIBs.

15.
J Acoust Soc Am ; 150(1): 410, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340466

RESUMO

The membrane sound absorber (MSA) with a compact magnet has exhibited excellent tunable properties for low-frequency sound absorption. To further clarify its acoustic properties, this paper presents a theoretical model based on a multi-mechanism coupling impedance method. The model predicts the absorption coefficients and resonant frequencies of the MSA at different tuning magnetic states for three cavity configurations. These parameters are then experimentally measured using an impedance tube for model validation, demonstrating good agreement between the measured and predicted values. Subsequent analysis reveals the iron-platelet-magnet resonance mechanism introduced by the tuned magnetic field is the main factor behind the appearance and shift of absorption peaks in the low-frequency region, which are mostly independent of the back cavity. In other words, the MSA with a back cavity of any size can achieve sound absorption in the low-frequency region. This demonstrates the potential of the structure in achieving an ultra-thin, low-frequency, tunable sound-absorber design that can be adapted to different noise sources.

16.
Angew Chem Int Ed Engl ; 60(39): 21512-21520, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34309972

RESUMO

One of the major challenges regarding the sulfur cathode of Li-S batteries is to achieve high sulfur loading, fast Li ions transfer, and the suppression of lithium polysulfides (LiPSs) shuttling. This issue can be solved by the development of molybdenum carbide decorated N-doped carbon hierarchical double-shelled hollow spheres (Mo2 C/C HDS-HSs). The mesoporous thick inner shell and the central void of the HDS-HSs achieve high sulfur loading, facilitate the ion/electrolyte penetration, and accelerate charge transfer. The microporous thin outer shell suppresses LiPSs shuttling and reduces the charge/mass diffusion distance. The double-shelled hollow structure accommodates the volume expansion during lithiation. Furthermore, Mo2 C/C composition renders the HDS-HSs cathode with improved conductivity, enhanced affinity to LiPSs, and accelerated kinetics of LiPSs conversion. The structural and compositional advantages render the Mo2 C/C/S HDS-HSs electrode with high specific capacity, excellent rate capability, and ultra-long cycling stability in the composed Li-S batteries.

17.
Adv Mater ; 33(50): e2005924, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34050548

RESUMO

2D materials have experienced rapid and explosive development in the past decades. Among them, black phosphorus (BP) is one of the most promising materials on account of its thickness-dependent bandgap, high charge-carrier mobility, in-plane anisotropic structure, and excellent biocompatibility, as well as the broad applications brought by the properties. In view of the electron configuration, the most unique feature of BP is the lone-pair electrons on each P atom. The lone-pair electrons inevitably cause high reactivity of BP, particularly toward water/oxygen, which greatly limits the practical application of BP under ambient conditions. The other side of the coin is that BP can serve as an electron donor to promote the construction of BP-based hybrid materials and/or to boost the performance of BP or BP-based hybrid materials in applications. Here, recent advances in passivation and application of BP by addressing the interaction between the lone-pair electrons of BP and the other materials are discussed, and prospects for future research on BP are also proposed.

18.
J Colloid Interface Sci ; 594: 522-530, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774408

RESUMO

Aqueous rechargeable batteries (ARBs) have the advantages of low cost, high safety and sustainable environmental friendliness. However, the key challenge for ARBs is the narrow electrochemical stability window of the water, undoubtedly leading to the low output voltage, the underachieved capacity and a low energy density. Prussian blues and their analogues have attracted great research interest for energy storage due to the advantages of facile synthesis, versatile categories and tunable three dimensional frameworks. Herein a flexible integrated potassium cobalt hexacyano ferrates (Co-HCF) on carbon fiber clothes (CFCs) were designed through a feasible route combining the controllable electrochemical deposition and the efficient co-precipitation process. The Co-HCF@CFCs demonstrate an excellent sodium ion storage with a high reversible capacity of 91 mAh g-1 at 1 A g-1 and 55 mAh g-1 at 10 A g-1 in aqueous electrolytes. The long cycling stability at the high current demonstrate the excellent structure stability of the Co-HCF@CFCs. Analysis on the rate Cyclic voltammograms (CV) profiles reveal the fast electrochemical kinetics with the capacitive controlled process, while galvanostatic intermittent titration technique (GITT) tests fast diffusion coefficient related with the sodium ions intercalation/deintercalation in the Co-HCF@CFCs. In addition, the flexible Co-CHF@CFCs also demonstrate excellent performance for quasi-solid-state ARBs even at the high bending angles. The high quality Co-HCF@CFCs with advantage of high rate capability and excellent reversible capacity make them a promising candidate for high performance ARBs.

19.
Nanoscale Adv ; 3(19): 5650-5655, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36133262

RESUMO

As an advanced two-dimensional (2D) material with unique properties, black phosphorus (BP) has attracted great attention in a variety of fields. One of the main obstacles for the practical application of BP is the poor ambient stability of few-layer BP, especially under light irradiation. In this study, a light-absorbing conjugated polymer is functionalized on the surface of BP during the exfoliation process, yielding BP nanosheets with light-resistance. The obtained BP/polymer nanosheets demonstrate enhanced stability compared to pure BP under sunlight. Systematic characterization reveals that the crystal structure and electronic characteristics of BP are well retained after 30 days of sun exposure. This convenient and efficient conjugated polymer passivation provides a novel light-prohibited method to improve the stability of BP for future applications.

20.
Appl Microbiol Biotechnol ; 104(23): 10165-10179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33044599

RESUMO

Due to the high mortality rate and an increase in breast cancer incidence, it has been challenging for researchers to come across an effective chemotherapeutic strategy with minimum side effects. Therefore, the need for the development of effective chemotherapeutic drugs is still on the verge. Consequently, we approached a new mechanism to address this issue. The naturally available peptide named latcripin-7A (LP-7A), extracted from a mushroom called Lentinula edodes, provided us promising results in terms of growth arrest, apoptosis, and autophagy in breast cancer cells (MCF-7 and MDA-MB-231). Expressions of protein markers for apoptosis, autophagy, and cell cycle were confirmed via Western blot analysis. Migration and invasion assays were performed to analyze the anti-migratory and anti-invasive properties of LP-7A, while cell cycle analysis was performed via flow cytometry to evaluate its affect over cell growth. Supportive assays were performed like acridine orange, Hoechst 33258 stain, DNA fragmentation, and mitochondrial membrane potential (MMP) to further confirm the anticancer effect of LP-7A on breast cancer cell lines. It is concluded that LP-7A effectively reduces migration and promotes apoptosis as well as autophagy in MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell growth arrest at G0/G1 phase and decreasing mitochondrial membrane potential without adverse effects on MCF-10A normal breast cells. KEY POINTS: • In this study, we have investigated the anti-cancer activity of novel latcripin-7A (LP-7A), a protein extracted as a result of de novo characterization of Lentinula edodes C91-3. • We conclude in our research work that LP-7A can initiate diverse cell death-related events, i.e., apoptosis and autophagy in both triple-positive and triple-negative breast cancer cell lines by interacting with different nodes of cellular signaling that can further be investigated in vivo to gain a better understanding.


Assuntos
Neoplasias da Mama , Cogumelos Shiitake , Apoptose , Autofagia , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...