Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 99, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461229

RESUMO

The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 µg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.


Assuntos
Vírus da Influenza A , Influenza Humana , Estruturas Metalorgânicas , Infecções por Orthomyxoviridae , Ácidos Ftálicos , Camundongos , Humanos , Animais , Infecções por Orthomyxoviridae/tratamento farmacológico , Transdução de Sinais , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
PLoS Pathog ; 19(5): e1011406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200384

RESUMO

Influenza A virus (IAV) H1N1 infection is a constant threat to human health and it remains so due to the lack of an effective treatment. Since melatonin is a potent antioxidant and anti-inflammatory molecule with anti-viral action, in the present study we used melatonin to protect against H1N1 infection under in vitro and in vivo conditions. The death rate of the H1N1-infected mice was negatively associated with the nose and lung tissue local melatonin levels but not with serum melatonin concentrations. The H1N1-infected AANAT-/- melatonin-deficient mice had a significantly higher death rate than that of the WT mice and melatonin administration significantly reduced the death rate. All evidence confirmed the protective effects of melatonin against H1N1 infection. Further study identified that the mast cells were the primary targets of melatonin action, i.e., melatonin suppresses the mast cell activation caused by H1N1 infection. The molecular mechanisms involved melatonin down-regulation of gene expression for the HIF-1 pathway and inhibition of proinflammatory cytokine release from mast cells; this resulted in a reduction in the migration and activation of the macrophages and neutrophils in the lung tissue. This pathway was mediated by melatonin receptor 2 (MT2) since the MT2 specific antagonist 4P-PDOT significantly blocked the effects of melatonin on mast cell activation. Via targeting mast cells, melatonin suppressed apoptosis of alveolar epithelial cells and the lung injury caused by H1N1 infection. The findings provide a novel mechanism to protect against the H1N1-induced pulmonary injury, which may better facilitate the progress of new strategies to fight H1N1 infection or other IAV viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , Melatonina , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Mastócitos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Pulmão
3.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 18(2): 76-8, 2002 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-12192764

RESUMO

OBJECTIVE: To study the effect of the color doppler flow imaging (CDFI) technique in the design of the axial pattern flap. METHODS: From March 1996 to June 1999, ten patients were included in this study. Among them, there were seven males and three females. Their defects ranged from 6 cm x 8 cm to 15 cm x 20 cm. Before operation, an axial flap was designed by the traditional method. Then CDFI technique of high frequency (5.0-7.5 MHz) was used to examine the major arterial supply of the flap and modify the design accordingly. At last, the modified flap was transferred to cover the defect. RESULTS: All the patients except one underwent the operation successfully. The cosmetic and functional results of the flap were excellent. CONCLUSION: CDFI is a simple, direct and accurate method for detecting the vascular supply of an axial pattern flap. This technique should be popularized to avoid blindness of flap design.


Assuntos
Retalhos Cirúrgicos/irrigação sanguínea , Ultrassonografia Doppler em Cores , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...