Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(33): 13133-13142, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35944183

RESUMO

Deep insights into and substantial enhancement of the effective anisotropy energy barrier for magnetization reversal (Ueff) are vitally important for the technological applications of dysprosium(III)-based single-molecule magnets (Dy-SMMs). To fully refine the ligand-field effect on spin relaxation, four centrosymmetric {Dy2} entities with formula [Dy2(CH3OH)2L2(RCOO)2] (H2L = 2-hydroxy-N'-((pyridin-2-yl)methylene)benzohydrazide) have been solvothermally prepared by varying the side groups of carboxylate coligands (RCOO-, R = CF3 for 1, H for 2, CH3 for 3, and Cp2Fe for 4). Structural analyses reveal that all of the DyIII carriers in 1-4 have the same N2O6 donor environments, and the non-coordinative R groups attached to the equatorial carboxylate bridges have not substantially changed the binding ability of the shortest Dy-Ophenolate bonds located at the axial position of the ligand field. Interestingly, the side groups have monotonically decreased the zero-field Ueff barriers of these weak antiferromagnetically coupled {Dy2} analogues from 721 K down to 379 K. Further electronic structure calculations demonstrate that the main magnetic axes of 1-4 are highly dominated by these comparable Dy-Ophenolate short bonds, and the g tensors have produced gradually increased transverse components responsible significantly for the decreased Ueff barriers. Additionally, thermally assisted relaxations occur preferably through the second (for 1) and the first (for 2-4) Kramer doublets. These interesting findings afford a new side-group effect to comprehensively understand the magnetostructural relationships and advance the rational design of high-performance Dy-SMMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...