Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 1(7): 2606-2611, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132733

RESUMO

Vertical heterostructures based on two-dimensional (2D) layered materials are ideal platforms for electronic structure engineering and novel device applications. However, most of the current heterostructures focus on layered crystals with a similar lattice. In addition, the heterostructures made by 2D materials with different structures are rarely investigated. In this study, we successfully fabricated vertical heterostructures by combining orthorhombic SnSe/hexagonal In2Se3 vertical heterostructures using a two-step physical vapor deposition (PVD) method. Structural characterization reveals that the heterostructures are formed of vertically stacked SnSe on the top of the In2Se3 film, and vertical heterostructures possess high quality, where In2Se3 exposed surface is the (0001) plane and SnSe prefers growing along the [100] direction. Raman maps confirm the precise spatial modulation of the as-grown SnSe/In2Se3 heterostructures. In addition, high-performance photodetectors based on the vertical heterostructures were fabricated directly on the substrate, which showed a broadband response, reversibility and stability. Compared with the dark current, the device demonstrated one order magnification of photocurrent, about 186 nA, under 405 nm laser illumination and power of 1.5 mW. Moreover, the device shows an obvious increase in the photocurrent intensity with the changing incident laser power, where I ph ∝ P 0.7. Also, the device demonstrated a high responsivity of up to 350 mA W-1 and a fast response time of about 139 ms. This study broadens the horizon for the synthesis and application of vertical heterostructures based on 2D layered materials with different structures and further develops exciting technologies beyond the reach of the existing materials.

2.
Nanoscale ; 9(38): 14558-14564, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28932859

RESUMO

In-plane anisotropy in optical, electronic and thermal properties of two-dimensional (2D) materials has attracted significant interest because of the huge potential applications for developing novel devices. In this work, outstanding angle-dependent Raman property of layered SnSe nano-plates is obtained via polarized Raman system and it is confirmed that the Raman polarization directions of two Ag modes (130 cm-1 and 150 cm-1) are consistent with specific crystalline directions (zigzag direction or armchair direction) of SnSe flakes under parallel polarization configuration at home temperature and low temperature. Furthermore, the SnSe nano-plate devices show excellent angle-resolved photo-response at home temperature and low temperature (150 K) with a 90° cycle period and the polarized directions are also along zigzag direction and armchair direction, which is ascribed to the unique in-plane asymmetric crystal structure. These prominent in-plane anisotropic properties provide a precise and rapid method to determine the crystal orientation of SnSe nano-flakes and open up the new applications of 2D asymmetric structure materials.

3.
Nanoscale ; 9(36): 13786-13793, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890983

RESUMO

Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdSxSe(1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdSxSe(1-x) flakes exhibit a high photoresponsivity of 703 A W-1 with an external quantum efficiency of 1.94 × 103 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.

4.
Nanoscale ; 8(22): 11375-9, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27199079

RESUMO

Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

5.
Nanoscale ; 8(4): 2063-70, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26698370

RESUMO

Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm(-1)) Raman mode reaches the maximum when incident light polarization is parallel to the armchair direction of the 2D SnS flakes, which strongly suggests that the Ag (190.7 cm(-1)) mode can be used to determine the crystallographic orientation of the 2D SnS. In addition, temperature-dependent Raman characterization confirmed that the 2D SnS flakes have a higher sensitivity to temperature than graphene, MoS2 and black phosphorus. These results are useful for the future studies of the optical and thermal properties of 2D orthorhombic SnS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...