Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(17): e2206950, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088732

RESUMO

Owing to their unique advantages, single-electrode triboelectric nanogenerators (SETENGs) have gained wide attention and have been applied in myriad areas, especially in the burgeoning flexible/wearable electronics. However, there is still a lack of a clear understanding of SETENGs. For example, previous simulation models generally put the reference electrode perpendicularly below the working part, but in practice, the reference electrode is designed in various scenarios and noticeable differences in outputs often occur when the reference electrode changes. With SETENGs developing towards wearability and portability, its reference electrode is often required to be constructed inside the device. Consequently, to achieve optimum performance, it is essential to understand the reference electrode's influence on the outputs. Here, the influence of the reference electrode on the performance of SETENGs is systematically investigated and the targeted optimization strategies are thoroughly revealed. First, theoretical simulations are conducted to investigate the reference electrode's effect on the performance of SETENGs with different structures and in various working modes. Secondly, the theoretical results are certified through corresponding experiments. Based on the results, the targeted optimization strategies for SETENGs are comprehensively demonstrated. This work provides fundamental guidance for the development of TENGs and the design and fabrication of new electronic devices.

2.
Adv Sci (Weinh) ; 10(12): e2207743, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808857

RESUMO

The 2D MoS2 with superior optoelectronic properties such as high charge mobility and broadband photoresponse has attracted broad research interests in photodetectors (PD). However, due to the atomic thin layer of 2D MoS2 , its pure photodetectors usually suffer from inevitable drawbacks such as large dark current, and intrinsically slow response time. Herein, a new organic material BTP-4F with high mobility is successfully stacked with 2D MoS2 film to form an integrated 2D MoS2 /organic P-N heterojunction, facilitating efficient charge transfer as well as significantly suppressed dark current. As a result, the as-obtained 2D MoS2 /organic (PD) has exhibited excellent response and fast response time of 332/274 µs. The analysis validated photogenerated electron transition from this monolayer MoS2 to subsequent BTP-4F film, whereas the transited electron is originated from the A- exciton of 2D MoS2 by temperature-dependent photoluminescent analysis. The ultrafast charge transfer time of ≈0.24 ps measured by time-resolved transient absorption spectrum is beneficial for efficient electron-hole pair separation, greatly contributing to the obtained fast photoresponse time of 332/274 µs. This work can open a promising window to acquire low-cost and high-speed (PD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...