Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.834
Filtrar
1.
Se Pu ; 42(7): 721-729, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966980

RESUMO

Lysine (K) is widely used in the design of lysine-targeted crosslinkers, structural elucidation of protein complexes, and analysis of protein-protein interactions. In "shotgun" proteomics, which is based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), proteins from complex samples are enzymatically digested, generating thousands of peptides and presenting significant challenges for the direct analysis of K-containing peptides. In view of the lack of effective methods for the enrichment of K-containing peptides, this work developed a method which based on a hydrophobic-tag-labeling reagent C10-S-S-NHS and reversed-phase chromatography (termed as HYTARP) to achieve the efficient enrichment and identification of K-containing peptides from complex samples. The C10-S-S-NHS synthesized in this work successfully labeled standard peptides containing various numbers of K and the labeling efficiency achieved up to 96% for HeLa cell protein tryptic digests. By investigating the retention behavior of these labeled peptides in C18 RP column, we found that most K-labeled peptides were eluted once when acetonitrile percentage reached 57.6% (v/v). Further optimization of the elution gradient enabled the efficient separation and enrichment of the K-labeled peptides in HeLa digests via a stepwise elution gradient. The K-labeled peptides accounted for 90% in the enriched peptides, representing an improvement of 35% compared with the number of peptides without the enrichment. The dynamic range of proteins quantified from the enriched K-containing peptides spans 5-6 orders of magnitude, and realized the detection of low-abundance proteins in the complex sample. In summary, the HYTARP strategy offers a straightforward and effective approach for reducing sample complexity and improving the identification coverage of K-containing peptides and low-abundance proteins.


Assuntos
Cromatografia de Fase Reversa , Interações Hidrofóbicas e Hidrofílicas , Lisina , Peptídeos , Cromatografia de Fase Reversa/métodos , Lisina/química , Peptídeos/química , Peptídeos/análise , Humanos , Células HeLa , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos
2.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982460

RESUMO

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Precursores de RNA , Splicing de RNA , Imunidade Vegetal/genética , Arabidopsis/genética , Arabidopsis/imunologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Spliceossomos/metabolismo , Spliceossomos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia
3.
Mediterr J Hematol Infect Dis ; 16(1): e2024052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984102

RESUMO

Background: The paper was to investigate the clinical relevance of oxidative stress (OS) and inflammation-associated targets in coronary artery lesions (CALs) associated with Kawasaki disease (KD). Methods: The clinical data from 455 sufferers diagnosed with KD between February 2021 and June 2023 were gathered and divided into two groups: CAL and NCAL. The regression analysis was conducted to search for independent covariates for CALs related to OS and inflammation. The predictive nomogram was structured according to these risk factors. The properties of the model were estimated using calibration and receiver operating characteristic curves. Results: The levels of CRP, IL-6, PLT count, ESR, ox-HDL, MDA, and PLR were more elevated in CAL patients with KD; interestingly, HDL and superoxide dismutase (SOD) were low in the CAL group. Ascension of CRP, IL-6, ESR, ox-HDL, MDA, and PLR, and diminution of HDL and SOD were considered independent risk factors. The nomogram constructed using these factors demonstrated a satisfactory calibration degree and discriminatory power, with an area under the curve of 0.812. In the verification set, the area under the curve was found to be 0.799. Conclusion: The model was established according to 8 OS and inflammation-associated risk factors bound up with CALs in KD sufferers. It may be a usable approach for early diagnosis of CALs in KD.

4.
J Chin Med Assoc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984546

RESUMO

BACKGROUND: This study aimed to investigate the clinical efficacy of intra-articular injections of medical chitosan for treating knee osteoarthritis (KOA) and measure the lipid metabolism profiles of the synovial tissue. METHODS: 60 patients with KOA undergoing conservative treatment were recruited and randomized into two groups: one without pharmacological intervention (OA group) and the other receiving course-based intra-articular medical chitosan injections (CSI group). Quantitative lipidomic profile of synovial tissue was analyzed. Functional scores, including Kellgren-Lawrence rating (K-L), VAS, WOMAC scoring, and AKS scoring were conducted. RESULTS: Survival from the initial conservative treatment to final knee arthroplasty was significantly longer in the CSI group compared to the OA group. Except for the pre-surgery VAS score, no statistically significant differences were observed in the other scores, including K-L, initial VAS, WOMAC, and AKS. However, the CSI group experienced a slightly more pronounced decline in AKS-Knee subscores compared to the OA group. Compared to the CSI group, the OA group exhibited a significant upregulation in most differential lipids, particularly triacylglycerides (TAGs, 77%). The OA group had notably higher levels of long-chain unsaturated fatty acids. CONCLUSION: Intra-articular injection of medical chitosan significantly prolongs the survival period before knee arthroplasty and reduces the deposition of TAGs metabolites.

5.
Org Lett ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984734

RESUMO

A new radical difluoromethylation was developed by using inexpensive and readily available difluoroacetic anhydride and N-phenyl-4-methylbenzenesulfonamide for the first time. The reaction of arylboronic acids with the new difluoromethylation reagent, N-phenyl-N-tosyldifluoroacetamide, proceeded smoothly in the presence of palladium catalyst to provide difluoromethylarenes in satisfactory to excellent yields. The electronic property (electron-donating or electron-withdrawing) of the substituent linked to the aromatic ring did not considerably influence the reactivity of arylboronic acid. Various groups, including the synthetically useful functional groups Cl, CN, and NO2, were tolerated well under the current reaction conditions.

6.
Sci Rep ; 14(1): 15516, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969651

RESUMO

The intelligent appearance quality classification method for Auricularia auricula is of great significance to promote this industry. This paper proposes an appearance quality classification method for Auricularia auricula based on the improved Faster Region-based Convolutional Neural Networks (improved Faster RCNN) framework. The original Faster RCNN is improved by establishing a multiscale feature fusion detection model to improve the accuracy and real-time performance of the model. The multiscale feature fusion detection model makes full use of shallow feature information to complete target detection. It fuses shallow features with rich detailed information with deep features rich in strong semantic information. Since the fusion algorithm directly uses the existing information of the feature extraction network, there is no additional calculation. The fused features contain more original detailed feature information. Therefore, the improved Faster RCNN can improve the final detection rate without sacrificing speed. By comparing with the original Faster RCNN model, the mean average precision (mAP) of the improved Faster RCNN is increased by 2.13%. The average precision (AP) of the first-level Auricularia auricula is almost unchanged at a high level. The AP of the second-level Auricularia auricula is increased by nearly 5%. And the third-level Auricularia auricula AP is increased by 1%. The improved Faster RCNN improves the frames per second from 6.81 of the original Faster RCNN to 13.5. Meanwhile, the influence of complex environment and image resolution on the Auricularia auricula detection is explored.


Assuntos
Aprendizado Profundo , Algoritmos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Humanos
7.
Nat Commun ; 15(1): 5647, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969653

RESUMO

Direct reduction of unactivated alkyl halides for C(sp3)-N couplings under mild conditions presents a significant challenge in organic synthesis due to their low reduction potential. Herein, we introduce an in situ formed pyridyl-carbene-ligated copper (I) catalyst that is capable of abstracting halide atom and generating alkyl radicals for general C(sp3)-N couplings under visible light. Control experiments confirmed that the mono-pyridyl-carbene-ligated copper complex is the active species responsible for catalysis. Mechanistic investigations using transient absorption spectroscopy across multiple decades of timescales revealed ultrafast intersystem crossing (260 ps) of the photoexcited copper (I) complexes into their long-lived triplet excited states (>2 µs). The non-Stern-Volmer quenching dynamics of the triplets by unactivated alkyl halides suggests an association between copper (I) complexes and alkyl halides, thereby facilitating the abstraction of halide atoms via inner-sphere single electron transfer (SET), rather than outer-sphere SET, for the formation of alkyl radicals for subsequent cross couplings.

8.
J Ovarian Res ; 17(1): 140, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970121

RESUMO

BACKGROUND: Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need. METHODS: In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores. RESULTS: Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups. CONCLUSION: Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.


Assuntos
Cistadenocarcinoma Seroso , Imunoterapia , Neoplasias Ovarianas , Humanos , Feminino , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/microbiologia , Neoplasias Ovarianas/patologia , Prognóstico , Imunoterapia/métodos , Pessoa de Meia-Idade , Microbiota , Biomarcadores Tumorais , Idoso , Análise de Sobrevida , Adulto
9.
Anal Chem ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973171

RESUMO

In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.

10.
Angew Chem Int Ed Engl ; : e202409708, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973371

RESUMO

Organic piezoelectric nanogenerators (PENGs) are attractive in harvesting mechanical energy for various self-powering systems. However, their practical applications are severely restricted by their low output open circuit voltage. To address this issue, herein, we prepared two two-dimensional (2D) covalent organic frameworks (COFs, CityU-13 and CityU-14), functionalized with fluorinated alkyl chains for PENGs. The piezoelectricity of both COFs was evidenced by switchable polarization, characteristic butterfly amplitude loops, phase hysteresis loops, conspicuous surface potentials and high piezoelectric coefficient value (d33). The PENGs fabricated with COFs displayed highest output open circuit voltages (60 V for CityU-13 and 50 V for CityU-14) and delivered satisfactory short circuit current with an excellent stability of over 600 seconds. The superior open circuit voltages of CityU-13 and CityU-14 rank in top 1 and 2 among all reported organic materials-based PENGs.

11.
J Anim Sci Biotechnol ; 15(1): 94, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971799

RESUMO

BACKGROUND: C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis. RESULTS: MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05). CONCLUSIONS: MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization, improving colonization of Akkermansia, reducing intestinal barrier damage, and down-regulating NF-κB activation.

12.
Nat Commun ; 15(1): 5681, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971813

RESUMO

Fast photoinduced charge separation (CS) and long-lived charge-separated state (CSS) in small-molecules facilitate light-energy conversion, while simultaneous attainment of both remains challenging. Here we accomplish this through aggregation based on fullerene-indacenodithiophene dyads. Transient absorption spectroscopy reveals that, compared to solution, the CS time in aggregates is accelerated from 41.5 ps to 0.4 ps, and the CSS lifetime is prolonged from 311.4 ps to 40 µs, indicating that aggregation concomitantly promotes fast CS and long-lived CSS. Fast CS arises from the hot charge-transfer states dissociation, opening up additional resonant channels to free carriers (FCs); subsequently, charge recombination into intramolecular triplet CSS becomes favorable mediated by spin-uncorrelated FCs. Different from fullerene/indacenodithiophene blends, the unique CS mechanism in dyad aggregates reduces the long-lived CSS dependence on molecular order, resulting in a CSS lifetime 200 times longer than blends. This endows the dyad aggregates to exhibit both photoelectronic switch properties and superior photocatalytic capabilities.

13.
Syst Rev ; 13(1): 171, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971833

RESUMO

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is a type of abnormal lung function. PRISm and mortality have been explored in several studies, but a comprehensive evaluation of the associations is limited. The current study aims to conduct a systematic review and meta-analysis in order to investigate the mortality and cardiovascular diseases in patients with PRISm. METHODS: PubMed, Embase, and Web of Science databases, as well as gray literature sources, were searched for relevant studies published up to 7 September 2023 without language restrictions. This review included all published observational cohort studies that investigated the association of PRISm with mortality in the general population, as well as subgroup analyses in smokers and pre-bronchodilation spirometry studies. The outcomes of interest were all-cause mortality, cardiovascular mortality, and respiratory-related mortality. The Newcastle-Ottawa scale assessed study quality. Sensitivity and subgroup analyses explored heterogeneity and robustness. Publication bias was assessed with Egger's and Begg's tests. RESULTS: Overall, eight studies were included in this meta-analysis. The pooled HR was 1.60 (95% CI, 1.48-1.74) for all-cause mortality, 1.68 (95% CI, 1.46-1.94) for CVD mortality, and 3.09 (95% CI, 1.42-6.71) for respiratory-related mortality in PRISm group compared to normal group. In the subgroup analysis, participants with PRISm had a higher effect (HR, 2.11; 95% CI, 1.74-2.54) on all-cause mortality among smokers relative to participants with normal spirometry. Furthermore, the association between PRISm and mortality risk was consistent across several sensitivity analyses. CONCLUSIONS: People with PRISm were associated with an increased risk of all-cause mortality, CVD mortality, and respiratory-related mortality as compared to those with normal lung function in the general population. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42023426872.


Assuntos
Doenças Cardiovasculares , Espirometria , Humanos , Doenças Cardiovasculares/mortalidade , Causas de Morte
14.
RSC Adv ; 14(30): 21425-21431, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38979464

RESUMO

Although a lot of research has been carried out on the adhesion mechanism of gecko bristles, the research on materials inspired by gecko bristles is still limited to the design of geometric structure and the optimization of preparation process, and the adhesion mechanism of materials is still unclear. In this paper, the molecular structure of the end of the bristle-like material is focused on, and the interaction between functional group modified carbon nanotubes and the interface is analyzed by molecular dynamics simulation. Thus, the influence of different polar functional groups on the interfacial force between carbon nanotubes and silica is revealed, and the adhesion enhancement mechanism of polar groups on the interface between carbon nanotubes and silica is further verified.

15.
mBio ; : e0154924, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953350

RESUMO

Metabolism in host cells can be modulated after viral infection, favoring viral survival or clearance. Here, we report that lipid droplet (LD) synthesis in host cells can be modulated by yin yang 1 (YY1) after porcine reproductive and respiratory syndrome virus (PRRSV) infection, resulting in active antiviral activity. As a ubiquitously distributed transcription factor, there was increased expression of YY1 upon PRRSV infection both in vitro and in vivo. YY1 silencing promoted the replication of PRRSV, whereas YY1 overexpression inhibited PRRSV replication. PRRSV infection led to a marked increase in LDs, while YY1 knockout inhibited LD synthesis, and YY1 overexpression enhanced LD accumulation, indicating that YY1 reprograms PRRSV infection-induced intracellular LD synthesis. We also showed that the viral components do not colocalize with LDs during PRRSV infection, and the effect of exogenously induced LD synthesis on PRRSV replication is nearly lethal. Moreover, we demonstrated that YY1 affects the synthesis of LDs by regulating the expression of lipid metabolism genes. YY1 negatively regulates the expression of fatty acid synthase (FASN) to weaken the fatty acid synthesis pathway and positively regulates the expression of peroxisome proliferator-activated receptor gamma (PPARγ) to promote the synthesis of LDs, thus inhibiting PRRSV replication. These novel findings indicate that YY1 plays a crucial role in regulating PRRSV replication by reprogramming LD synthesis. Therefore, our study provides a novel mechanism of host resistance to PRRSV and suggests potential new antiviral strategies against PRRSV infection.IMPORTANCEPorcine reproductive and respiratory virus (PRRSV) has caused incalculable economic damage to the global pig industry since it was first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. It is well known that viruses are parasitic pathogens, and the completion of their replication life cycle is highly dependent on host cells. A better understanding of host resistance to PRRSV infection is essential for developing safe and effective strategies to control PRRSV. Here, we report a crucial host antiviral molecule, yin yang 1 (YY1), which is induced to be expressed upon PRRSV infection and subsequently inhibits virus replication by reprogramming lipid droplet (LD) synthesis through transcriptional regulation. Our work provides a novel antiviral mechanism against PRRSV infection and suggests that targeting YY1 could be a new strategy for controlling PRRSV.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38954244

RESUMO

Triple-negative breast cancer (TNBC) could benefit from PARP inhibitors (PARPi) for their frequent defective homologous recombination repair (HR). However, the efficacy of PARPi is limited by their lower bioavailability and high susceptibility to drug resistance, so it often needs to be combined with other treatments. Herein, polydopamine nanoparticles (PDMN) were constructed to load Olaparib (AZD) as two-channel therapeutic nanoplatforms. The PDMN has a homogeneous spherical structure around 100 nm and exhibits a good photothermal conversion efficiency of 62.4%. The obtained AZD-loaded nanoplatform (PDMN-AZD) showed enhanced antitumor effects through the combination of photothermal therapy (PTT) and PARPi. By western blot and flow cytometry, we found that PTT and PARPi could exert synergistic antitumor effects by further increasing DNA double-strand damage (DSBs) and enhancing HR defects. The strongest therapeutic effect of PDMN-AZD was observed in a BRCA-deficient mouse tumor model. In conclusion, the PDMN-AZD nanoplatform designed in this study demonstrated the effectiveness of PTT and PARPi for synergistic treatment of TNBC and preliminarily explained the mechanism.

17.
Genome Biol Evol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946297

RESUMO

Schoenoplectus tabernaemontani (C. C. Gmelin) Palla is a typical macrophyte in diverse wetland ecosystems. This species holds great potential in decontamination applications and carbon sequestration. Previous studies have shown that this species may have experienced recent polyploidization. This would make S. tabernaemontani a unique model to study the processes and consequences of whole genome duplications in the context of the well-documented holocentric chromosomes and dysploidy events in Cyperaceae. However, the inference was not completely solid because it lacked homology information which is essential to ascertain polyploidy. We present here the first chromosome-level genome assembly for S.tabernaemontani. By combining ONT long-reads and Illumina short-reads, plus chromatin conformation via the Hi-C method, we assembled a genome spanning 507.96 Mb, with 99.43% of Hi-C data accurately mapped to the assembly. The assembly contig N50 value was 3.62 Mb. The overall BUSCO score was 94.40%. About 68.94% of the genome was comprised of repetitive elements. 36994 protein-coding genes were predicted and annotated. Long terminal repeat retrotransposons (LTR-rts) accounted for approximate 26.99% of the genome, surpassing the content observed in most sequenced Cyperid genomes. Our well-supported haploid assembly comprised 21 pseudochromosomes, each harboring putative holocentric centromeres. Our findings corroborated a karyotype of 2n=2X=42. We also confirmed a recent whole genome duplication (WGD) occurring after the divergence between Schoenoplecteae and Bolboschoeneae. Our genome assembly expands the scope of sequenced genomes within the Cyperaceae family, encompassing the fifth genus. It also provides research resources on Cyperid evolution and wetland conservation.

18.
Adv Sci (Weinh) ; : e2402209, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946664

RESUMO

Zintl phases typically exhibit low lattice thermal conductivity, which are extensively investigated as promising thermoelectric candidates. While the significance of Zintl anionic frameworks in electronic transport properties is widely recognized, their roles in thermal transport properties have often been overlooked. This study delves into KCdSb as a representative case, where the [CdSb4/4]- tetrahedrons not only impact charge transfer but also phonon transport. The phonon velocity and mean free path, are heavily influenced by the bonding distance and strength of the Zintl anions Cd and Sb, considering the three acoustic branches arising from their vibrations. Furthermore, the weakly bound Zintl cation K exhibits localized vibration behaviors, resulting in strong coupling between the high-lying acoustic branch and the low-lying optical branch, further impeding phonon diffusion. The calculations reveal that grain boundaries also contribute to the low lattice thermal conductivity of KCdSb through medium-frequency phonon scattering. These combined factors create a glass-like thermal transport behavior, which is advantageous for improving the thermoelectric merit of zT. Notably, a maximum zT of 0.6 is achieved for K0.84Na0.16CdSb at 712 K. The study offers both intrinsic and extrinsic strategies for developing high-efficiency thermoelectric Zintl materials with extremely low lattice thermal conductivity.

19.
iScience ; 27(6): 109798, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947509

RESUMO

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program. GSK2334470 (GSK), a dual PDPK1/SGK1 inhibitor, effectively mitigated the HS-induced enhancement in glycolytic capacity and the overproduction of IL-17A. Therefore, administration of GSK markedly alleviated HS-exacerbated RA progression in collagen-induced arthritis (CIA) model. Collectively, our data indicate that HS consumption subverts Th17/Treg homeostasis through the PDPK1-SGK1-FoxO1 signaling, while GSK could be a viable drug against RA progression in clinical settings.

20.
ACS Omega ; 9(25): 27127-27136, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947783

RESUMO

Improving the sensitivity of the fluorescence method for the detection of bioactive molecules is crucial in biochemical analysis. In this work, an ultrasensitive sensing strategy was constructed for the detection of ascorbic acid (AA) using high-quality 3-mercaptopropionic acid-capped CdSe/CdS/ZnS quantum dots (MPA-CdSe/CdS/ZnS QDs) as the fluorescent probe. The prepared water-soluble QDs exhibited a high photoluminescence quantum yield (PL QY) of up to 96%. Further, the fluorescence intensity of the QDs was intensively quenched through the dynamic quenching of Ag+ ions due to an efficient photoinduced electron transfer progress. While the existence of AA before adding Ag+ ions, Ag+ ions were reduced. Thus, the interaction of the QDs and Ag+ ions was destroyed, which led to the fluorescence distinct recovery. The detection limit of AA could be as low as 0.2 nM using this sensing system. Additionally, most relevant small molecules and physiological ions had no influence on the analysis of AA. Satisfactory results were obtained in orange beverages, showing its great potential as a meaningful platform for highly sensitive and selective AA sensing for clinical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...