Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; : 114881, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996864

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive deficits. Although the pathogenesis of AD is unclear, oxidative stress has been implicated to play a dominant role in its development. The flavonoid isoorientin (ISO) and its synthetic derivatives TFGF-18 selectively inhibit glycogen synthase kinase-3ß (GSK-3ß), a potential target of AD treatment. PURPOSE: To investigate the neuroprotective effect of TFGF-18 against oxidative stress via the GSK-3ß pathway in hydrogen peroxide (H2O2)-induced rat pheochromocytoma PC12 cells in vitro and scopolamine (SCOP)-induced AD mice in vivo. METHOD: The oxidative stress of PC12 cells was induced by H2O2 (600 µM) and the effects of TFGF-18 (2 and 8 µM) or ISO (12.5 and 50 µM) were observed. The AD mouse model was induced by SCOP (3 mg/kg), and the effects of TFGF-18 (2 and 8 mg/kg), ISO (50 mg/kg), and donepezil (DNP) (3 mg/kg) were observed. DNP, a currently accepted drug for AD was used as a positive control. The neuronal cell damages were analyzed by flow cytometry, LDH assay, JC-1 assay and Nissl staining. The oxidative stress was evaluated by the detection of MDA, SOD, GPx and ROS. The level of ACh, and the activity of AChE, ChAT were detected by the assay kit. The expressions of Bax, Bcl-2, caspase3, cleaved-caspase3, p-AKT (Thr308), AKT, p-GSK-3ß (Ser9), GSK-3ß, Nrf2, and HO-1, as well as p-CREB (Ser133), CREB, and BDNF were analyzed by western blotting. Morris water maze test was performed to analyze learning and memory ability. RESULTS: TFGF-18 inhibited neuronal damage and the expressions of Bax caspase3 and cleaved-caspase3, and increased the expression of Bcl-2 in vitro and in vivo. The level of MDA and ROS were decreased while the activities of SOD and GPx were increased by TFGF-18. Moreover, TFGF-18 increased the p-AKT, p-GSK-3ß (Ser9), Nrf2, HO-1, p-CREB, and BDNF expression reduced by H2O2 and SCOP. Meanwhile, MK2206, an AKT inhibitor, reversed the effect of TFGF-18 on the AKT/GSK-3ß pathway. In addition, the cholinergic system (ACh, ChAT, and AChE) disorders were retrained and the learning and memory impairments were prevented by TFGF-18 in SCOP-induced AD mice. CONCLUSIONS: TFGF-18 protects against neuronal cell damage and cognitive impairment by inhibiting oxidative stress via AKT/GSK-3ß/Nrf2 pathway.

2.
Int J Biochem Cell Biol ; 173: 106609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880193

RESUMO

Indomethacin, as a non-steroidal anti-inflammatory drugs, is widely used in the clinic. However, it can cause severe injury to the gastrointestinal tract and the incidence is increasing. It has become an essential clinical problem in preventing intestinal damage. Teprenone has been reported to have a significant positive effect on intestinal mucosal lesions, but long-term use of teprenone can elicit adverse reactions. WeiNaiAn capsule is a traditional Chinese medicine formulation used widely in the treatment of gastric and duodenal mucosal injury. However, how WeiNaiAn protects against intestinal mucosal injury and its mechanism of action are not known. In this study, WeiNaiAn capsule or Teprenone treatment improved the intestinal mucosal pathological score and antioxidant level in indomethacin-induced rats. 16 S rRNA sequence data showed WeiNaiAn capsule reverted the structure community and replenished the beneficial bacteria. Furthermore, fingerprint analysis revealed multiple components of WeiNaiAn capsule, including calycosin glucoside, ginsenoside Rg1, ginsenoside Rb1, taurocholic acid sodium, formonetin, and calycosin glucoside. The components of WeiNaiAn capsule promoted the wound healing of the epithelial cell in vitro. Moreover, the components of WeiNaiAn capsule inhibited the protein expressions of phosphoinositide 3-kinase /protein kinase B /mammalian target of rapamycin in hydrogen peroxide or lipopolysaccharides-induced cell model. In conclusion, WeiNaiAn capsule improves intestinal mucosal injury by regulating cell migration, enhancing antioxidant activity, and promoting the structure of the bacterial community homeostasis, the multiple targets provide the parameters for the treatment in the clinic.

3.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785143

RESUMO

Astragaloside IV (AS­IV) has various pharmacological effects, including antioxidant and immunoregulatory properties, which can improve myasthenia gravis (MG) symptoms. However, the potential mechanism underlying the effects of AS­IV on MG remains to be elucidated. The present study aimed to investigate whether AS­IV has a therapeutic effect on MG and its potential mechanism of action. By subcutaneously immunizing rats with R97­116 peptide, an experimental autoimmune (EA) MG rat model was established. AS­IV (40 or 80 mg/kg/day) treatment was then applied for 28 days after modeling. The results demonstrated that AS­IV significantly ameliorated the weight loss, Lennon score and pathological changes in the gastrocnemius muscle of EAMG rats compared with the model group. Additionally, the levels of acetylcholine receptor antibody (AChR­Ab) were significantly decreased, whereas mitochondrial function [ATPase and cytochrome c (Cyt­C) oxidase activities] and ultrastructure were improved in the AS­IV treated rats. Moreover, the mRNA and protein expression levels of phosphatase and tensin homolog­induced putative kinase 1, Parkin, LC3II and Bcl­2, key signaling molecules for mitophagy and apoptosis, were upregulated, whereas the mRNA and protein expression levels of p62, Cyt­C, Bax, caspase 3 and caspase 9 were downregulated following AS­IV intervention. In conclusion, AS­IV may protect against EAMG in a rat model by modulating mitophagy and apoptosis. These findings indicated the potential mechanism underlying the effects of AS­IV on MG and provided novel insights into treatment strategies for MG.


Assuntos
Apoptose , Mitofagia , Miastenia Gravis Autoimune Experimental , Saponinas , Triterpenos , Animais , Saponinas/farmacologia , Apoptose/efeitos dos fármacos , Triterpenos/farmacologia , Mitofagia/efeitos dos fármacos , Ratos , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Feminino , Modelos Animais de Doenças , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Receptores Colinérgicos/metabolismo , Ratos Sprague-Dawley , Substâncias Protetoras/farmacologia
4.
J Ethnopharmacol ; 328: 118131, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565408

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY: The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS: The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS: ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION: Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Mesalamina/efeitos adversos , Cromatografia Líquida , Interleucina-17/metabolismo , Espectrometria de Massas em Tandem , Colo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Fatores de Transcrição/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Chin J Integr Med ; 30(6): 565-576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565799

RESUMO

Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.


Assuntos
Neoplasias Associadas a Colite , Progressão da Doença , Macrófagos , Humanos , Macrófagos/patologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Colorretais/patologia , Animais , Colite Ulcerativa/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/complicações
6.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278026

RESUMO

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Assuntos
Doença de Alzheimer , Morfinanos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Neuroimunomodulação , Escopolamina/farmacologia , Inflamação/patologia , Homeostase , Encéfalo/metabolismo , Colinérgicos/farmacologia
7.
Mol Divers ; 28(1): 125-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36881209

RESUMO

Copper-catalyzed selective alkynylation with N-propargyl carboxamides as nucleophiles has been successfully developed for the synthesis of C2-functionalized chromanones. Under optimized reaction conditions, 21 examples were obtained in one-pot procedure through 1,4-conjugate addition. This protocol features readily available feedstocks, easy operations, and moderate to good yields, which provides viable access to pharmacologically active C2-functionalized chromanones.


Assuntos
Cromonas , Cobre , Estrutura Molecular , Catálise
8.
Front Mol Biosci ; 9: 859645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813827

RESUMO

Background: The pathogenesis of ulcerative colitis (UC) is closely related to immunity. The immune characteristic differences between active UC (UCa) and inactive UC (UCin) have not been completely explained. Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) were used to analyze the immune cells of UCa, UCin and healthy control (HC) subjects to determine the specific immune characteristics. Methods: The immune cell subsets among UCa, UCin, HC were distinguished using CyTOF analysis. scRNA-seq analysis was used to validate the results of CyTOF. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to understand the roles of differential immune cell subsets. Results: After CyTOF analysis and validation of scRNA-seq analysis, differential immune cell subsets mainly contained TNF+IL-17A++ effector memory (EM) Tregs, CXCR3+CTLA4+ EM Tregs, CXCR3++CCR7+ B cells, HLA-DR+CCR7+ dendritic cells (DCs) and CTLA-4+ natural killer (NK) cells. In comparison to HC, CCR6+TNF+CD161+ EM T cells were highly enriched in UCa and UCin. Besides, UCa was characterized by an increase in CD38+TNF+ EM Tregs, CXCR3+CCR4+ naïve B cells, HLA-DR+CD14+IL21+ macrophages/monocytes, HLA-DR+CCR7+ DCs, AHR+CD14+ cytotoxic NK (cNK) cells and CD8A+IFNG+ cNK cells. Decreases in CD38+CD27+ plasmablasts, CXCR3+CD38+ regulatory NK cells, and CXCR3+CCR7+ tolerant NK cells in UCa were discovered. Conclusions: Novel immune cell subsets which was used to distinguish UCa, UCin and HC were identified. This information might be utilized to distinguish the patients with UCa and UCin.

9.
Org Biomol Chem ; 20(32): 6413-6417, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876433

RESUMO

A green and efficient method for the synthesis of oxadiazaborole, dioxazaborinine, and oxadiazaborinine from the reactions of phenylboronic acid with amidoxime, α-hydroxyl oxime and α-hydroxyl hydrazone, respectively, is described. The reactions were performed under catalyst-free and mild conditions. All products can be rapidly purified by filtration and washing. In addition, a set of iminoboronates were prepared following a one-pot multicomponent reaction procedure using α-hydroxyl hydrazone, salicylaldehyde and boronic acid derivatives as starting materials and their photophysical properties were assessed. Then, cross-coupling reactions can be carried out smoothly on some target compounds, which may help develop new boron masking strategies.


Assuntos
Boro , Hidrazonas , Catálise
10.
Pharm Biol ; 60(1): 1095-1105, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35658820

RESUMO

CONTEXT: Valerian extract capsule (VEC) is an effective Chinese patent medicine used for gastrointestinal (GI) diseases. OBJECTIVE: To investigate the detailed pharmacological activity for VEC clinical effects in GI diseases. MATERIALS AND METHODS: Sprague-Dawley rats were divided into six groups: control, model, and drug-treated (VEC-L, VEC-M, VEC-H, and teprenone). Rats were orally administered VEC (124, 248, 496 mg/kg) and teprenone (21.43 mg/kg) for 3 consecutive days. After 1 h, the five groups (except the control group) were orally given ethanol (10 mL/kg) for 1 h or indomethacin (80 mg/kg) for 7 h. The spasmolytic activity of VEC (0.01-1 mg/mL) on ACh/BaCl2-induced New Zealand rabbit smooth muscle contraction was performed. The C57BL/6 mice carbon propelling test evaluated the effects of VEC (248-992 mg/kg) on intestinal motility in normal and neostigmine/adrenaline-induced mice. RESULTS: Compared with the model group, VEC treatment reduced the gastric lesion index and mucosal damage. Further experiments showed that the pathological ameliorative effect of VEC was accompanied by augmentation of the enzymatic antioxidant system and cytoprotective marker (COX-1, p < 0.01; PGI2 p < 0.05;), along with the alleviation of the levels of MPO (ethanol: 15.56 ± 0.82 vs. 12.15 ± 2.60, p < 0.01; indomethacin: 9.65 ± 3.06 vs. 6.36 ± 2.43, p < 0.05), MDA (ethanol: 1.66 ± 0.44 vs. 0.81 ± 0.58, p < 0.01; indomethacin: 1.71 ± 0.87 vs. 1.09 ± 0.43, p < 0.05), and inflammatory mediators. VEC decreased the high tone induced by ACh/BaCl2 and promoted intestinal transit in normal and neostigmine/adrenaline-induced mice. DISCUSSION AND CONCLUSIONS: VEC showed a potential gastroprotective effect, suggesting that VEC is a promising phytomedicine for the treatment of GI diseases.


Assuntos
Antiulcerosos , Úlcera Gástrica , Animais , Antiulcerosos/farmacologia , Epinefrina/efeitos adversos , Etanol/toxicidade , Mucosa Gástrica , Motilidade Gastrointestinal , Indometacina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neostigmina/efeitos adversos , Extratos Vegetais/efeitos adversos , Coelhos , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamente , Valeriana
11.
Curr Org Synth ; 19(8): 923-929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579128

RESUMO

BACKGROUND AND OBJECTIVE: As a key pharmacophore, the cyano group widely exists in a variety of biologically active compounds. Besides, nitriles are also valuable intermediates for many common functional groups. In this current work, a new synthesis strategy was developed to obtain nitriles from aldehydes. METHODS: Using commercially available aldehydes as raw materials, and hydroxylamine and hydrochloride as nitrogen sources, the corresponding nitrile compounds were successfully synthesized by the one-pot method through the promotion of imidazole hydrochloride. And it was characterized by 1H NMR, 13C NMR, and mass spectrometry. RESULTS: Various reaction conditions were applied in order to find an optimum and convenient procedure for the formation of nitriles. The highest yields (95%) were achieved using sulfolane as a solvent, and imidazole hydrochloride as a promoter. CONCLUSION: In conclusion, we developed a new synthetic method for nitrile compounds from aldehydes. Twenty seven examples of functionalized nitrile compounds have been synthesized in good to excellent yields. This methodology features that an environmentally benign imidazole hydrochloride replaces transition metal catalysts and oxidants required in conventional strategies to convert aldehydes into nitriles with good functional group tolerability. Further exploration of imidazole hydrochloride is ongoing in our laboratory.


Assuntos
Aldeídos , Nitrilas , Aldeídos/química , Imidazóis , Ácido Clorídrico , Hidroxilaminas , Solventes , Oxidantes , Nitrogênio
12.
Phytomedicine ; 100: 154050, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397284

RESUMO

BACKGROUND: Sinomenine (SIN) is an anti-inflammatory drug that has been used for decades in China to treat arthritis. In a previous study, SIN acted on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit inflammatory responses in macrophages, which indicates a new anti-inflammatory mechanism of SIN. However, the level of α7nAChR was increased in the inflammatory responses and was downregulated by SIN in vitro, so the underlying mechanisms of SIN acting on α7nAChR remain unclear. PURPOSE: To analyze the role of α7nAChR in inflammation and the effect and mechanism of SIN regulation of α7nAChR. METHODS: The effects of SIN on α7nAChR in endotoxemic mice and LPS-stimulated macrophages were observed. Nicotine (Nic) was used as a positive control, and berberine (Ber) was used as a negative control targeting α7nAChR. The antagonists of α7nAChR, α-bungarotoxin (BTX) and mecamylamine (Me), were used to block α7nAChR. In RAW264.7 macrophage cells in vitro, α7nAChR short hairpin RNA (shRNA) was used to knock down α7nAChR. Macrophage polarization was analyzed by the detection of TNF-α, IL-6, iNOS, IL-10, Arg-1, and Fizz1. U0126 was used to block ERK phosphorylation. The cytokines α7nAChR, ERK1/2, p-ERK1/2 and Egr-1 were detected. RESULTS: SIN decreased the levels of TNF-α, IL-6 and the expression of α7nAChR increased by LPS in endotoxemic mice. The above effects of SIN were attenuated by BTX. In the α7nAChR shRNA transfected RAW264.7 cells, compared with the control, α7nAChR was knocked down, and M1 phenotype markers (including TNF-α, IL-6, and iNOS) were significantly downregulated, whereas M2 phenotype markers (including IL-10, Arg-1, and Fizz1) were significantly upregulated when stimulated by LPS. SIN inhibited the expression of p-ERK1/2 and the transcription factor Egr-1 induced by LPS in RAW264.7 cells, and the above effects of SIN were attenuated by BTX. The expression of α7nAChR was suppressed by U0126, which lessened the expression of p-ERK1/2 and Egr-1. CONCLUSIONS: SIN acts on α7nAChR to inhibit inflammatory responses and downregulates high expression of α7nAChR in vivo and in vitro. The increase of α7nAChR expression is correlated with inflammatory responses and participates in macrophage M1 polarization. SIN downregulates α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1, which contributes to inhibiting macrophage M1 polarization and inflammatory responses.


Assuntos
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Retroalimentação , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Morfinanos , RNA Interferente Pequeno/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
13.
Phytomedicine ; 94: 153836, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775357

RESUMO

BACKGROUND: The application/abuse of antibiotics can cause antibiotic-induced intestinal injury (AIJ), a typical clinical issue that disturbs intestinal homeostasis. However, the underlying post-transcriptional mechanism of AIJ remains unknown. Glycyrrhetinic acid (GA) is one of the main components of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Batalin (Fabaceae), and findings of our previous study showed that GA can maintain intestinal homeostasis post-transcriptionally through the RNA-binding protein human antigen R (HuR). PURPOSE: This study aimed to elucidate the role of HuR in AIJ and the protective effects of GA on AIJ. STUDY DESIGN AND METHODS: Clindamycin hydrochloride was used to clarify the effect of the antibiotic on the intestinal epithelium. Intestinal epithelium cell-6 (IEC-6) and Caco2 cells were used to demonstrate the in vitro effects of the antibiotic and GA on intestinal cells. HuR plasmid and siRNA were used to overexpress or silence HuR in vitro. SD rats were induced by using clindamycin hydrochloride capsules (250 mg/kg i.g.) for 7 consecutive days to construct the in vivo AIJ model. Rats of the AIJ model group were administrated GA (10 and 20 mg/kg i.g.) for 7 days, and subsequently, the protective effect of GA on the intestinal epithelium was evaluated. RESULTS: In vitro results showed that the antibiotic (150-500 µM) suppressed proliferation, induced a delay in restitution after wounding, and caused cell cycle arrest at the G0/G1 phase in IEC-6 and Caco-2 cells. Moreover, the expression levels of HuR and its downstream gene, occludin and cyclin D1, decreased after treatment with the antibiotic (500 µM). Overexpression of HuR and GA (10 and 20 µM) reversed the antibiotic-induced inhibition of proliferation and G0/G1 phase arrest, and the antibiotic-induced decrease in HuR, occludin, and cyclin D1 expression was reversed after GA treatment (10 and 20 µM) in IEC-6 cells. In vivo results revealed the antibiotic-induced epithelial injury of both the small intestines (shortened and spared mucosa) and the large intestines (injured/deformed glands, reduced number of cup cells, and evident inflammatory cell infiltration), all of which were ameliorated after GA treatment (10 and 20 µM). CONCLUSION: Antibiotics induce intestinal epithelial injury through HuR, and GA can exert a protective effect on AIJ by restoring HuR levels.


Assuntos
Células Epiteliais , Ácido Glicirretínico , Animais , Antibacterianos/efeitos adversos , Células CACO-2 , Ácido Glicirretínico/farmacologia , Humanos , Mucosa Intestinal , Proteínas de Ligação a RNA , Ratos , Ratos Sprague-Dawley
14.
Front Med (Lausanne) ; 9: 1064106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714133

RESUMO

Objectives: For Crohn's disease (CD), the alternation of the active phase and inactive phase may be related to humoral immunity and cellular immunity. This study aims to understand the characteristics of immune cells in patients with active CD (CDa) and inactive CD (CDin). Methods: Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) data about CDa, CDin, and healthy control (HC) were included. CyTOF analysis was performed to capture gated subsets, including T cells, T regulatory (Treg) cells, B cells, innate immune cells, and natural killer (NK) cells. Differential analysis was used to identify different immune cell subsets among CDa, CDin, and HC. ScRNA-seq analysis was used to verify the results of CyTOF. CD-related signaling pathways were obtained using KEGG pathway enrichment analysis. CellChat analysis was used to infer the cell communication network among immune cell subsets. Results: Compared to patients with CDin, patients with CDa had higher abundances of CD16+CD38+CD4+CXCR3+CCR6+ naive T cells, HLA-DR+CD38+IFNγ+TNF+ effector memory (EM) T cells, HLA-DR+IFNγ+ naive B cells, and CD14++CD11C+IFNγ+IL1B+ monocytes. KEGG analysis showed the similarity of pathway enrichment for the earlier four subsets, such as thermogenesis, oxidative phosphorylation, and metabolic pathways. The patients with CDin were characterized by an increased number of CD16+CD56dimCD44+HLA-DR+IL22+ NK cells. Compared to HC, patients with CDa demonstrated a low abundance of HLA-DR+CCR6+ NK cells and a high abundance of FOXP3+CD44+ EM Tregs. CellChat analysis revealed the interaction network of cell subsets amplifying in CDa compared with CDin. Conclusion: Some immune subsets cells were identified for CDa and CDin. These cells may be related to the occurrence and development of CD and may provide assistance in disease diagnosis and treatment.

15.
Ann Palliat Med ; 10(8): 9184-9191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488404

RESUMO

BACKGROUND: This study aimed to investigate the distribution pattern of carbapenemases and evaluate their solitary contribution to carbapenem resistance. METHODS: One hundred and twelve isolates of Acinetobacter baumannii (A. baumannii) isolated from the intensive care unit (ICU) of a southern China tertiary hospital were identified, and antimicrobial susceptibility tests (ASTs) of these strains were determined. Common carbapenemases were detected and the distribution pattern of carbapenemases was analyzed. Logistic regression and general linear model analyzed were performed to identify the correlation between antimicrobial susceptibility and carbapenemase genes. RESULTS: These 112 strains were classified into a carbapenem-resistant A. baumannii (CRAB) group (71.7%) and a carbapenem-susceptible A. baumannii (CSAB) group (28.3%). Carbapenemase genes, including blaOXA-51-like (100.0%), blaOXA-23 (93.4%), ISAba1/blaOXA-51-like (27.5%), blaNDM-1 (8.8%), blaOXA-24 (2.2%) and blaOXA-58 (2.2%) were detected in CRAB strains, and no blaSIM, blaVIM and blaIMP gene in these 112 isolates. There was a statistically significant difference between CSAB and CRAB group in carrying blaOXA-23 (P<0.001) and ISAba1/blaOXA-51-like (P=0.024). CONCLUSIONS: A pattern of blaOXA-51-like (100.0%), blaOXA-23 (93.4%), blaNDM-1 (8.8%), blaOXA-24 (2.2%) and blaOXA-58 (2.2%) was detected in CRAB strains. BlaOXA-23-like and ISAba1/blaOXA-51-like complex might be more relevant to carbapenem resistance in A. baumannii. Harboring blaOXA-23-like and ISAba1/blaOXA-51-like complex might increase the possibility of resistance 2.16 times [risk ratio (RR): 2.16; 95% confidence interval (CI): 1.04-4.51] and 1.29 times (RR: 1.29; 95% CI: 1.07-1.56), respectively.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases
16.
BMC Infect Dis ; 21(1): 841, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416851

RESUMO

AIM: This study has conducted a comparative analysis of common carbapenemases harboring, the expression of resistance-nodulation-cell division (RND) family efflux pumps, and biofilm formation potential associated with carbapenem resistance among Acinetobacter baumannii (A. baumannii) strains with different carbapenem susceptibility. METHODS: A total of 90 isolates of A. baumannii from two tertiary hospitals of China were identified and grouped as carbapenem susceptible A. baumannii (CSAB) strains and carbapenem non-susceptible A. baumannii (CnSAB) strains based on the susceptibility to imipenem. Harboring of carbapenemase genes, relative expression of RND family efflux pumps and biofilm formation potential were compared between the two groups. RESULT: Among these strains, 12 (13.3 %) strains were divided into the CSAB group, and 78 (86.7 %) strains into the CnSAB group. Compared with CSAB strains, CnSAB strains increased distribution of blaOXA-23 (p < 0.001) and ISAba1/blaOXA-51-like (p = 0.034) carbapenemase genes, and a 6.1-fold relative expression of adeB (p = 0.002), while CSAB strains led to biofilm formation by 1.3-fold than CnSAB strains (p = 0.021). CONCLUSIONS: Clinically, harboring more blaOXA-23-like and ISAba1/blaOXA-51-like complex genes and overproduction of adeABC are relevant with carbapenem resistance, while carbapenem susceptible strains might survive the stress of antibiotic through their ability of higher biofilm formation.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Biofilmes , Carbapenêmicos/farmacologia , Divisão Celular , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
17.
Oxid Med Cell Longev ; 2021: 6660616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936383

RESUMO

Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H2O2-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H2O2. After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism.


Assuntos
Antígenos de Superfície/metabolismo , DNA Mitocondrial/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Peróxido de Hidrogênio/efeitos adversos , Proteínas de Neoplasias/metabolismo , Animais , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Dinâmica Mitocondrial/efeitos dos fármacos , Mioblastos/metabolismo , Biogênese de Organelas , Ratos
18.
J Ethnopharmacol ; 264: 113243, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32781258

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is an autoimmune disease. Although the mortality rate of UC is not very high, it has a considerable morbidity rate and an unsatisfactory cure rate. Without effective treatment, UC is likely to develop into colon cancer. Kuijieling (KJL) is an effective empirical formula to treat UC in the clinical setting, and it has been proven to have curative effects against UC. AIM OF THE STUDY: In a previous study, we demonstrated that KJL could suppress NOD-like receptor protein 3 (NLRP3) to reduce inflammatory cytokines and alleviate UC. In this study, we investigated the mechanism of KJL in more detail, from the perspective of pyroptosis. MATERIALS AND METHODS: We established a dextran sulfate sodium-induced UC mouse model and RAW264.7 cells to measure different indicators with different experimental methods. The efficiency of KJL was evaluated by measuring the length and unit weight of mouse colons, and assessment of pathological injury was performed using HE staining. We detected different expression levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, gasdermin-D C-terminal domain (GSDMD-C), gasdermin-D N-terminal domain (GSDMD-N), IL-1ß, and IL-18 in colon tissues and cells using RT-qPCR and western blotting. Immunohistochemistry was used for tissues and immunofluorescence for cells to confirm protein expression. IL-1ß and IL-18 were measured with enzyme-linked immunosorbent assay in serum, tissue, and cell culture supernatant. MiR-223 was detected using RT-qPCR. RESULTS: After administration of KJL suspension, colon damage in KJL groups was milder than in model groups. ASC, caspase-1, IL-1ß, and IL-18 mRNA levels in colon tissue were decreased to different degrees in the KJL groups. Protein expression of NLRP3, caspase-1, GSDMD-N, IL-1ß, and IL-18 in vivo decreased significantly in the KJL groups. In addition, Mir-223 level decreased in colon tissue of the KJL groups. In vitro, NLRP3, ASC, caspase-1, GSDMD-N, IL-1ß, and IL-18 levels decreased to varying degrees, at both mRNA and protein levels. Mir-223 was lower in the KJL groups than in the model group. Furthermore, KJL was shown to regulate the level of miR-223, which returned to normal after its expression was inhibited or promoted, and the levels of associated indicators also returned to normal after transfection. CONCLUSIONS: KJL is able to inhibit pyroptosis to alleviate UC, but these suppression effects were not mediated through miR-223 regulation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/toxicidade , Piroptose/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Colite/patologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Piroptose/fisiologia , Células RAW 264.7 , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
20.
J Agric Food Chem ; 68(14): 4215-4226, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181656

RESUMO

Ginsenoside Rg2 has been previously reported to reduce glucose production and adipogenesis in adipose tissue. However, the effects of ginsenosides Rg2 on hepatic lipid metabolism remain vacant. In this study, we found that ginsenoside Rg2 treatment significantly attenuated oleic acid and palmitic acid (OA&PA)-induced intracellular lipid deposition and oxidative stress in mouse primary hepatocytes. C57BL/6J mice that are fed with a high-fat diet (HFD) and treated with ginsenosides Rg2 displayed decreased body weight, reversed hepatic steatosis, and improved glucose tolerance and insulin sensitivity. Ginsenoside Rg2 administration significantly ameliorated HFD-induced hepatic oxidative stress and apoptosis. Moreover, Ginsenoside Rg2 had a good affinity with Sirtuin1 (SIRT1) and regulated its expression in vivo and in vitro. Deficiency of SIRT1 eliminated the therapeutic effect of ginsenoside Rg2 on lipid accumulation and overproduction of reactive oxygen species (ROS) in OA&PA-induced mice primary hepatocytes. Ginsenoside Rg2 treatment failed to alter the lipid and glucose disorder in hepatic SIRT1 deficient mice feeding on HFD. SIRT1 deficiency dissolves the therapeutic effect of ginsenoside Rg2 on oxidative stress and hepatocyte apoptosis induced by HFD. In summary, ginsenoside Rg2 plays a therapeutic role in HFD-induced hepatosteatosis of mice by decreasing the lipogenesis process and improving antioxidant capacity in an SIRT1-dependent manner.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ginsenosídeos/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Sirtuína 1/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Ácido Oleico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...