Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759485

RESUMO

Atherosclerosis (AS) is an inflammatory disease involving multiple factors in its initiation and development. In recent years, the potential application of mesenchymal stem cells (MSCs) for treating AS has been investigated. This study examined the effect of TNF-α preconditioning on MSCs' therapeutic efficacy in treating AS in ApoE KO mice. TNF-α-treated MSCs were administered to high-fat diet-treated ApoE KO mice. Cytokine and serum lipid levels were measured before and after treatment. Cryosections of the atherosclerotic aorta were stained with Oil-Red-O, and the relative areas of atherosclerotic lesions were measured. The level of Tregs were increased in TNF-α-MSC-treated animals compared to the MSCs group. In addition, the systemic administration of TNF-α-MSCs to ApoE KO mice reduced the level of proinflammatory cytokines such as TNF-α and IFN-γ and increased the level of the immunosuppressive IL-10 in the blood serum. Total cholesterol and LDL levels were decreased, and HDL levels were increased in the TNF-α-MSCs group of ApoE KO mice. A histological analysis showed that TNF-α-MSCs decreased the size of the atherosclerotic lesion in the aorta of ApoE KO mice by 38%, although there was no significant difference when compared with untreated MSCs. Thus, our data demonstrate that TNF-α-MSCs are more effective at treating AS than untreated MSCs.

2.
Curr Stem Cell Res Ther ; 16(7): 897-913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511957

RESUMO

Atherosclerosis is a multifactorial and complex disease involving the arterial intima of the circulatory system. The main risk factors of atherosclerosis are diabetes mellitus, hypertension, hyperlipidemic states, smoking, mental stress, unhealthy diet, and a lack of physical activity. Recent studies have shown that dyslipidemia, inflammation and immune cells are involved in all stages of the development of atherosclerosis. Mesenchymal stem cells are a heterogeneous subset of multipotent cells that can be isolated from nearly all human organs and tissues, and they possess both regenerative and immunomodulatory properties. Recent studies have shown that mesenchymal stem cells are able to provide immunosuppressive, regenerative, and atheroprotective effects by reducing dyslipidemia, inflammation and inhibiting endothelial cell dysfunction and plaque formation during the development of atherosclerosis in animal models. Based on these beneficial effects, mesenchymal stem cells are considered a promising alternative therapeutic approach for the effective treatment of atherosclerosis. In this review, we summarize the current findings on potential applications of mesenchymal stem cells for preventing and regressing atherosclerosis as well as discuss strategies for improving the efficacy of mesenchymal stem cell-based therapy.


Assuntos
Aterosclerose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Aterosclerose/terapia , Células Endoteliais , Humanos , Imunomodulação , Inflamação/terapia
3.
Cell Transplant ; 29: 963689720956956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885682

RESUMO

Pericytes possess high multipotent features and cell plasticity, and produce angiogenic and neurotrophic factors that indicate their high regenerative potential. The aim of this study was to investigate whether transplantation of adipose-derived pericytes can improve functional recovery and neurovascular plasticity after ischemic stroke in rats. Rat adipose-derived pericytes were isolated from subcutaneous adipose tissue by fluorescence-activated cell sorting. Adult male Wistar rats were subjected to 90 min of middle cerebral artery occlusion followed by intravenous injection of rat adipose-derived pericytes 24 h later. Functional recovery evaluations were performed at 1, 7, 14, and 28 days after injection of rat adipose-derived pericytes. Angiogenesis and neurogenesis were examined in rat brains using immunohistochemistry. It was observed that intravenous injection of adipose-derived pericytes significantly improved recovery of neurological function in rats with stroke compared to phosphate-buffered saline-treated controls. Immunohistochemical analysis revealed that the number of blood capillaries was significantly increased along the ischemic boundary zone of the cortex and striatum in stroke rats treated with adipose-derived pericytes. In addition, treatment with adipose-derived pericytes increased the number of doublecortin positive neuroblasts. Our data suggest that transplantation of adipose-derived pericytes can significantly improve the neurologic status and contribute to neurovascular remodeling in rats after ischemic stroke. These data provide a new insight for future cell therapies that aim to treat ischemic stroke patients.


Assuntos
Tecido Adiposo/citologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Pericitos/transplante , Animais , Linhagem da Célula , Forma Celular , Células Clonais , Proteína Duplacortina , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/patologia , Masculino , Neovascularização Fisiológica , Neurogênese , Ratos Wistar
4.
Nutrients ; 12(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357551

RESUMO

Low blood levels of the vitamin D metabolite 25-hydroxyvitamin D [25(OH)D] have been associated with an increased risk and poorer outcomes of various cancers, including hematological malignancies. The Central Kazakhstan area has a relatively high incidence rate of leukemia. However, the relationship between vitamin D status and leukemia or other types of cancer in Kazakhstan has not yet been addressed. Therefore, in this first pilot single-center study conducted in Central Kazakhstan, we compared plasma levels of 25(OH)D and the vitamin D receptor (VDR) gene expression levels in peripheral blood mononuclear cells of patients with leukemia and demographically matching healthy volunteers. The levels of 25(OH)D in patients were found to be significantly lower (10.8 ± 7.0 ng/mL; n = 31) than in healthy subjects (21.6 ± 7.8 ng/mL; n = 34; p < 0.0001). A similar difference was observed in both younger (<60 years old) and older (>60 years old) participants, though there was no association between 25(OH)D concentration and age within the patient group. In female patients, 25(OH)D levels were significantly lower than in male patients (p = 0.04). No significant seasonal variations of 25(OH)D were observed in either the patient or the control group. VDR gene expression levels appeared to be similar in leukemia patients and healthy subjects, and no correlation between the cellular VDR expression and plasma 25(OH)D concentrations was observed in either group of participants. We did not observe a significant association of 25(OH)D or VDR levels and overall survival of leukemia patients. This observational study conducted for the first time in Kazakhstan supports previous findings demonstrating reduced blood 25(OH)D levels in cancer (leukemia) patients. Larger studies are required to determine whether low 25(OH)D plasma concentrations represent a risk factor for leukemia development and/or progression.


Assuntos
Expressão Gênica , Voluntários Saudáveis , Leucemia/sangue , Leucemia/genética , Leucócitos Mononucleares/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Fatores Etários , Feminino , Humanos , Incidência , Cazaquistão/epidemiologia , Leucemia/epidemiologia , Leucemia/etiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Caracteres Sexuais , Vitamina D/sangue , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...