Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Hematol ; 102(7): 1789-1799, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171599

RESUMO

Although anti-CD19 chimeric antigen receptor (CAR) T cell therapy has achieved satisfactory results in relapsed/refractory (R/R) follicular lymphoma (FL), patients with R/R FL and high-risk disease characteristics, previous hematopoietic stem cell transplantation, bulky disease, and progression of disease within 2 years (POD24) had a low complete response (CR). Twenty-seven patients with R/R FL, later disease stages, higher tumor burden, or higher previous treatment lines who had received Bruton tyrosine kinase (BTK) inhibitors before anti-CD19 CAR T cell therapy, or received BTK inhibitors as combination therapy, were included in this study. The clinical response and adverse events (AEs) in anti-CD19 CAR T cell therapy were observed. All patients with R/R FL who received BTK inhibitors combined with anti-CD19-CAR T cell therapy had later disease stages, higher tumor burden, and higher treatment lines than those who did not receive BTK inhibitor combination therapy. However, no difference in the clinical response was found between the two groups. The clinical response in the POD24 group was lower than that in the non-POD24 group; however, no difference in the clinical response was found between the FL and transformed FL (tFL) groups, between the follicular lymphoma international prognostic index (FLIPI) 1 1-2 and FLIPI 1 3-5 groups, and between the FLIPI 2 1-2 and FLIPI 2 3-5 groups. The mean anti-CD19 CAR T cell peak was higher in the CAR-T group with BTK inhibitor than in the CAR-T group without BTK inhibitor. Meanwhile, a higher proportion of patients in the non-POD24 group, FL group, and PR group achieved CR after 2 months. No difference in cytokine secretion was found between the CAR-T group with and without BTK inhibitors. It was higher in the non-POD24 group, FLIPI 1 3-5 group, and FLIPI 2 3-5 group. No difference in cytokine release syndrome and immune effector cell-associated neurotoxic syndrome grades was found between the CAR-T groups with or without BTK inhibitors and between the other groups. Poor prognostic factors, other than POD24, did not affect the clinical response to BTK inhibitors in combination with anti-CD19 CAR T cell therapy in patients with R/R FL. Therefore, BTK inhibitors combined with anti-CD19 CAR-T therapy may be an effective and safe approach for patients with R/R FL and high-risk factors.Trial registration: The study was registered at http://www.chictr.org.cn/index.aspx as ChiCTR-ONN-16009862 and http://www.chictr.org.cn/index.aspx as ChiCTR1800019622.


Assuntos
Linfoma Folicular , Linfoma não Hodgkin , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Linfoma Folicular/etiologia , Recidiva Local de Neoplasia , Linfoma não Hodgkin/etiologia , Antígenos CD19
2.
Technol Cancer Res Treat ; 21: 15330338221133224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254554

RESUMO

Background and Objects: Bruton's tyrosine kinase inhibitors are commonly used and effective for lymphoma and chronic lymphocytic leukemia (CLL). Ibrutinib might improve the effect of anti-cluster of differentiation 19 (CD19) chimeric antigen receptor (CD19 CAR) T-cell therapy in lymphoma, but the effects of zanubrutinib combined with CAR-T cells is unclear. Methods: We selected a low effect-target ratio (E:T = 1:3) to study this synergistic effect in vitro. The programed cell death protein 1 (PD-1) expression in CD19 CAR-T cells and immune phenotype of T lymphocytes were analyzed by flow cytometry (FCM). We selected CD19 CAR-T cells of a patient with diffuse large B cell lymphoma (DLBCL) to study the synergistic effect of zanubrutinib with CAR-T cells by bioluminescence imaging monitoring. The CD19 CAR-T cells expansion in mice was compared by FCM. Results: Zanubrutinib and ibrutinib had dose-dependent toxicity on both CAR-T cells and lymphoma cells. But there was no significant synergistic effect of the CD19 CAR-T cells combined with zanubrutinib/ibrutinib in vitro. The PD-1 expression in CD19 CAR-T cells increased when the CD19 CAR-T cells were co-cultured with Raji cells and decreased when ibrutinib was added in culture, but zanubrutinib had no such effect. The extinction of luciferase expression was more obvious in the polytherapy group of ibrutinib and CD19 CAR-T cell than that in the other groups. Moreover, the proportion of CAR-T cells in the combination therapy group of CD19 CAR-T cells and ibrutinib was higher than that of the polytherapy group of CD19 CAR-T cells with zanubrutinib group. The synergistic effect could be observed obviously in mice receiving ibrutinib combined with CD19 CAR-T cells. But zanubrutinib cannot perform joint therapy effect either in vitro or in mice. Conclusion: Zanubrutinib might have no joint therapy effect with CD19 CAR-T cells neither in vitro nor in mice, but the mechanism of different curative effects requires our further research and exploration.


Assuntos
Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Animais , Camundongos , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis , Pirimidinas , Receptores de Antígenos Quiméricos/genética , Linfócitos T
3.
Commun Biol ; 5(1): 744, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879418

RESUMO

Erectile dysfunction (ED) is closely associated with smooth muscle dysfunction, but its underlying mechanisms remains incompletely understood. We here reported that the reduced expression of myosin phosphatase target subunit 1 (MYPT1), the main regulatory unit of myosin light chain phosphatase, was critical for the development of vasculogenic ED. Male MYPT1 knockout mice had reduced fertility and the penises displayed impaired erections as evidenced by reduced intracavernous pressure (ICP). The penile smooth muscles of the knockout mice displayed enhanced response to G-Protein Couple Receptor agonism and depolarization contractility and resistant relaxation. We further identified a natural compound lotusine that increased the MYPT1 expression by inhibiting SIAH1/2 E3 ligases-mediated protein degradation. This compound sufficiently restored the ICP and improved histological characters of the penile artery of Mypt1 haploinsufficiency mice. In diabetic ED mice (db/db), the decreased expression of MYPT1 was measured, and ICP was improved by lotusine treatment. We conclude that the reduction of MYPT1 is the major pathogenic factor of vasculogenic ED. The restoration of MYPT1 by lotusine improved the function of injured penile smooth muscles, and could be a novel strategy for ED therapy.


Assuntos
Disfunção Erétil , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Liso/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Fatores de Virulência/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(26): e2121513119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737832

RESUMO

Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.


Assuntos
Asma , Músculo Liso , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Ativação Transcricional , Animais , Asma/genética , Asma/metabolismo , Asma/fisiopatologia , Broncodilatadores/farmacologia , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35617029

RESUMO

Intractable functional constipation (IFC) is the most severe form of constipation, but its etiology has long been unknown. We hypothesized that IFC is caused by refractory infection by a pathogenic bacterium. Here, we isolated from patients with IFC a Shigella species - peristaltic contraction-inhibiting bacterium (PIB) - that significantly inhibited peristaltic contraction of the colon by production of docosapentenoic acid (DPA). PIB colonized mice for at least 6 months. Oral administration of PIB was sufficient to induce constipation, which was reversed by PIB-specific phages. A mutated PIB with reduced DPA was incapable of inhibiting colonic function and inducing constipation, suggesting that DPA produced by PIB was the key mediator of the genesis of constipation. PIBs were detected in stools of 56% (38 of 68) of the IFC patients, but not in those of non-IFC or healthy individuals (0 of 180). DPA levels in stools were elevated in 44.12% (30 of 68) of the IFC patients but none of the healthy volunteers (0 of 97). Our results suggest that Shigella sp. PIB may be the critical causative pathogen for IFC, and detection of fecal PIB plus DPA may be a reliable method for IFC diagnosis and classification.


Assuntos
Motilidade Gastrointestinal , Shigella , Animais , Colo , Constipação Intestinal/diagnóstico , Constipação Intestinal/genética , Fezes , Humanos , Camundongos , Shigella/genética
6.
J Biol Chem ; 298(1): 101516, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942145

RESUMO

The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2'-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.


Assuntos
Músculo Esquelético , Regeneração , Células Satélites de Músculo Esquelético , Timo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Timo/metabolismo , Cicatrização
7.
J Genet Genomics ; 48(6): 452-462, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34353741

RESUMO

Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Quinases Lim/metabolismo , Músculo Liso/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Quinases Lim/genética , Camundongos , Contração Muscular , Músculo Liso/metabolismo , Fosforilação , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Serotonina/metabolismo
9.
J Biol Chem ; 295(47): 15988-16001, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913122

RESUMO

Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Eicosanoides/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação , Animais , Citocromo-B(5) Redutase/genética , Eicosanoides/genética , Retículo Endoplasmático/genética , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Sinvastatina/farmacologia
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(4): 1326-1331, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32798421

RESUMO

OBJECTIVE: To investigate the clinical characteristics, laboratorial and bone marrow pathological features of primary thrombocytopenia (ET) patients with different mutations of CALR, JAK2 and MPL genes. METHODS: The chinical data of 120 cases of ET in Jiangsu provincial people's hospital/ The First Affiliated Hospital of Nanjing Medical University from January 2015 to December 2017 were collected and analyzed, including 76 cases with JAK2 gene mutation, 40 cases with CALR gene mutation, 2 cases with MPL gene mutations, 2 cases without gene mutation. RESULTS: Among the ET patients, compared with the JAK2 gene mutation, CALR gene mutation showed statistically significant deareament of white blood cells and hemoglobin (P=0.001, P=0.01) and the male platelets in CALR group showed significant increament (P=0.04). Fourthermore, the average number of megakaryocytes and its cluster numbers in each hight power field of vision showed statistically significant decreament in CALR group as compared with JAK2 group (P=0.001, P=0.001), and thrombotic events in CALR group were signicantly lower than those in JAK2 group (7.5% vs 18.4%) (P=0.03). CONCLUSION: Mutations of CALR, JAK2 have different clinical characteristics and blood pathological changes of Chinese ET patients, and their clinical significance is worth to explore.


Assuntos
Trombocitemia Essencial , Medula Óssea , Calreticulina/genética , China , Humanos , Janus Quinase 2/genética , Masculino , Mutação , Receptores de Trombopoetina/genética
11.
J Biol Chem ; 295(26): 8656-8667, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32354746

RESUMO

Mutations in the myotubularin 1 (MTM1) gene can cause the fatal disease X-linked centronuclear myopathy (XLCNM), but the underlying mechanism is incompletely understood. In this report, using an Mtm1-/y disease model, we found that expression of the intragenic microRNA miR-199a-1 is up-regulated along with that of its host gene, dynamin 2 (Dnm2), in XLCNM skeletal muscle. To assess the role of miR-199a-1 in XLCNM, we crossed miR-199a-1-/- with Mtm1-/y mice and found that the resultant miR-199a-1-Mtm1 double-knockout mice display markers of improved health, as evidenced by lifespans prolonged by 30% and improved muscle strength and histology. Mechanistic analyses showed that miR-199a-1 directly targets nonmuscle myosin IIA (NM IIA) expression and, hence, inhibits muscle postnatal development as well as muscle maturation. Further analysis revealed that increased expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) up-regulates Dnm2/miR-199a-1 expression in XLCNM muscle. Our results suggest that miR-199a-1 has a critical role in XLCNM pathology and imply that this microRNA could be targeted in therapies to manage XLCNM.


Assuntos
Dinamina II/genética , MicroRNAs/genética , Miopatias Congênitas Estruturais/genética , Animais , Sistemas CRISPR-Cas , Dinamina II/análise , Feminino , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/análise , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia
12.
Front Physiol ; 11: 593966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424621

RESUMO

Both smooth muscle (SM) and non-muscle (NM) myosin II are expressed in hollow organs such as the bladder and uterus, but their respective roles in contraction and corresponding physiological functions remain to be determined. In this report, we assessed their roles by analyzing mice deficient of Myl9, a gene encoding the SM myosin regulatory light chain (SM RLC). We find that global Myl9-deficient bladders contracted with an apparent sustained phase, despite no initial phase. This sustained contraction was mediated by NM myosin RLC (NM RLC) phosphorylation by myosin light chain kinase (MLCK). NM myosin II was expressed abundantly in the uterus and young mice bladders, of which the force was accordingly sensitive to NM myosin inhibition. Our findings reveal distinct roles of SM RLC and NM RLC in SM contraction.

13.
J Biol Chem ; 294(28): 10954-10968, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152060

RESUMO

Neurite outgrowth requires coordinated cytoskeletal rearrangements in the growth cone and directional membrane delivery from the neuronal soma. As an essential Rho guanine nucleotide exchange factor (GEF), TRIO is necessary for cytoskeletal dynamics during neurite outgrowth, but its participation in the membrane delivery is unclear. Using co-localization studies, live-cell imaging, and fluorescence recovery after photobleaching analysis, along with neurite outgrowth assay and various biochemical approaches, we here report that in mouse cerebellar granule neurons, TRIO protein pools at the Golgi and regulates membrane trafficking by controlling the directional maintenance of both RAB8 (member RAS oncogene family 8)- and RAB10-positive membrane vesicles. We found that the spectrin repeats in Golgi-resident TRIO confer RAB8 and RAB10 activation by interacting with and activating the RAB GEF RABIN8. Constitutively active RAB8 or RAB10 could partially restore the neurite outgrowth of TRIO-deficient cerebellar granule neurons, suggesting that TRIO-regulated membrane trafficking has an important functional role in neurite outgrowth. Our results also suggest cross-talk between Rho GEF and Rab GEF in controlling both cytoskeletal dynamics and membrane trafficking during neuronal development. They further highlight how protein pools localized to specific organelles regulate crucial cellular activities and functions. In conclusion, our findings indicate that TRIO regulates membrane trafficking during neurite outgrowth in coordination with its GEF-dependent function in controlling cytoskeletal dynamics via Rho GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Movimento Celular , Cerebelo/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neuritos/fisiologia , Neurônios/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
14.
J Genet Genomics ; 46(3): 109-118, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30948334

RESUMO

Several factors have been implicated in obesity-related hypertension, but the genesis of the hypertension is largely unknown. In this study, we found a significantly upregulated expression of CPI-17 (C-kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa) and protein kinase C (PKC) isoforms in the vascular smooth muscles of high-fat diet (HFD)-fed obese mice. The obese wild-type mice showed a significant elevation of blood pressure and enhanced calcium-sensitized contraction of vascular smooth muscles. However, the obese CPI-17-deficient mice showed a normotensive blood pressure, and the calcium-sensitized contraction was consistently reduced. In addition, the mutant muscle displayed an abolished responsive force to a PKC activator and a 30%-50% reduction in both the initial peak force and sustained force in response to various G protein-coupled receptor (GPCR) agonists. Our observations showed that CPI-17-mediated calcium sensitization is mediated through a GPCR/PKC/CPI-17/MLCP/RLC signaling pathway. We therefore propose that the upregulation of CPI-17-mediated calcium-sensitized vasocontraction by obesity contributes to the development of obesity-related hypertension.


Assuntos
Hipertensão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Contração Muscular , Proteínas Musculares/metabolismo , Músculo Liso Vascular/fisiopatologia , Animais , Sequência de Bases , Cálcio/metabolismo , Técnicas de Inativação de Genes , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Obesos , Proteínas Musculares/deficiência , Proteínas Musculares/genética
15.
J Genet Genomics ; 46(2): 87-96, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30850274

RESUMO

As a critical guanine nucleotide exchange factor (GEF) regulating neurite outgrowth, Trio coordinates multiple processes of cytoskeletal dynamics through activating Rac1, Cdc42 and RhoA small GTPases by two GEF domains, but the in vivo roles of these GEF domains and corresponding downstream effectors have not been determined yet. We established multiple lines of knockout mice and assessed the respective roles of Trio GEF domains and Rac1 in axon outgrowth. Knockout of total Trio in cerebellar granule neurons (CGNs) led to an impaired F-actin rearrangement of growth cone and hence a retarded neurite outgrowth. Such a retardation was reproduced by inhibition of GEF1 domain or knockdown of Cdc42 and restored apparently by introduction of active Cdc42. As Rac1 deficiency did not affect the neurite outgrowth of CGNs, we suggested that Trio GEF1-mediated Cdc42 activation was required for neurite outgrowth. We established a GEF2-knockout line with deletion of all Trio isoforms except a cerebella-specific Trio8, a short isoform of Trio without GEF2 domain, and used this line as a GEF2-deficient animal model. The GEF2-deficient CGNs had a normal neurite outgrowth but abolished Netrin-1-promoted growth, without affecting Netrin-1 induced Rac1 activation. We thus suggested that Trio GEF1-mediated Cdc42 activation rather than Rac1 activation drives the F-actin dynamics necessary for neurite outgrowth, while GEF2 functions in Netrin-1-promoted neurite elongation. Our results delineated the distinct roles of Trio GEF domains in neurite outgrowth, which is instructive to understand the pathogenesis of clinical Trio-related neurodevelopmental disorders.


Assuntos
Cerebelo/citologia , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crescimento Neuronal , Neurônios/citologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Citoesqueleto/metabolismo , Técnicas de Inativação de Genes , Camundongos , Domínios Proteicos , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
J Allergy Clin Immunol ; 141(4): 1259-1268.e11, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28754608

RESUMO

BACKGROUND: Allergic inflammation has long been implicated in asthmatic hyperresponsiveness of airway smooth muscle (ASM), but its underlying mechanism remains incompletely understood. Serving as G protein-coupled receptor agonists, several inflammatory mediators can induce membrane depolarization, contract ASM, and augment cholinergic contractile response. We hypothesized that the signal cascade integrating on membrane depolarization by the mediators might involve asthmatic hyperresponsiveness. OBJECTIVE: We sought to investigate the signaling transduction of inflammatory mediators in ASM contraction and assess its contribution in the genesis of hyperresponsiveness. METHODS: We assessed the capacity of inflammatory mediators to induce depolarization currents by electrophysiological analysis. We analyzed the phenotypes of transmembrane protein 16A (TMEM16A) knockout mice, applied pharmacological reagents, and measured the Ca2+ signal during ASM contraction. To study the role of the depolarization signaling in asthmatic hyperresponsiveness, we measured the synergistic contraction by methacholine and inflammatory mediators both ex vivo and in an ovalbumin-induced mouse model. RESULTS: Inflammatory mediators, such as 5-hydroxytryptamin, histamine, U46619, and leukotriene D4, are capable of inducing Ca2+-activated Cl- currents in ASM cells, and these currents are mediated by TMEM16A. A combination of multiple analysis revealed that a G protein-coupled receptor-TMEM16A-voltage-dependent Ca2+ channel signaling axis was required for ASM contraction induced by inflammatory mediators. Block of TMEM16A activity may significantly inhibit the synergistic contraction of acetylcholine and the mediators and hence reduces hypersensitivity. CONCLUSIONS: A G protein-coupled receptor-TMEM16A-voltage-dependent Ca2+ channel axis contributes to inflammatory mediator-induced ASM contraction and synergistically activated TMEM16A by allergic inflammatory mediators with cholinergic stimuli.


Assuntos
Anoctamina-1/metabolismo , Asma/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Canais de Cálcio/metabolismo , Contração Muscular , Músculo Liso/fisiopatologia , Transdução de Sinais , Animais , Asma/fisiopatologia , Biomarcadores/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Fenômenos Eletrofisiológicos , Feminino , Cobaias , Masculino , Camundongos , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...