Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(3): 1274-1281, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307009

RESUMO

Methodologies for training machine learning potentials (MLPs) with quantum-mechanical simulation data have recently seen tremendous progress. Experimental data have a very different character than simulated data, and most MLP training procedures cannot be easily adapted to incorporate both types of data into the training process. We investigate a training procedure based on iterative Boltzmann inversion that produces a pair potential correction to an existing MLP using equilibrium radial distribution function data. By applying these corrections to an MLP for pure aluminum based on density functional theory, we observe that the resulting model largely addresses previous overstructuring in the melt phase. Interestingly, the corrected MLP also exhibits improved performance in predicting experimental diffusion constants, which are not included in the training procedure. The presented method does not require autodifferentiating through a molecular dynamics solver and does not make assumptions about the MLP architecture. Our results suggest a practical framework for incorporating experimental data into machine learning models to improve the accuracy of molecular dynamics simulations.

2.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37712780

RESUMO

Catalyzed by enormous success in the industrial sector, many research programs have been exploring data-driven, machine learning approaches. Performance can be poor when the model is extrapolated to new regions of chemical space, e.g., new bonding types, new many-body interactions. Another important limitation is the spatial locality assumption in model architecture, and this limitation cannot be overcome with larger or more diverse datasets. The outlined challenges are primarily associated with the lack of electronic structure information in surrogate models such as interatomic potentials. Given the fast development of machine learning and computational chemistry methods, we expect some limitations of surrogate models to be addressed in the near future; nevertheless spatial locality assumption will likely remain a limiting factor for their transferability. Here, we suggest focusing on an equally important effort-design of physics-informed models that leverage the domain knowledge and employ machine learning only as a corrective tool. In the context of material science, we will focus on semi-empirical quantum mechanics, using machine learning to predict corrections to the reduced-order Hamiltonian model parameters. The resulting models are broadly applicable, retain the speed of semiempirical chemistry, and frequently achieve accuracy on par with much more expensive ab initio calculations. These early results indicate that future work, in which machine learning and quantum chemistry methods are developed jointly, may provide the best of all worlds for chemistry applications that demand both high accuracy and high numerical efficiency.

3.
Nat Comput Sci ; 3(3): 230-239, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177878

RESUMO

Machine learning (ML) models, if trained to data sets of high-fidelity quantum simulations, produce accurate and efficient interatomic potentials. Active learning (AL) is a powerful tool to iteratively generate diverse data sets. In this approach, the ML model provides an uncertainty estimate along with its prediction for each new atomic configuration. If the uncertainty estimate passes a certain threshold, then the configuration is included in the data set. Here we develop a strategy to more rapidly discover configurations that meaningfully augment the training data set. The approach, uncertainty-driven dynamics for active learning (UDD-AL), modifies the potential energy surface used in molecular dynamics simulations to favor regions of configuration space for which there is large model uncertainty. The performance of UDD-AL is demonstrated for two AL tasks: sampling the conformational space of glycine and sampling the promotion of proton transfer in acetylacetone. The method is shown to efficiently explore the chemically relevant configuration space, which may be inaccessible using regular dynamical sampling at target temperature conditions.


Assuntos
Fabaceae , Incerteza , Glicina , Aprendizado de Máquina , Simulação de Dinâmica Molecular
4.
J Chem Inf Model ; 62(10): 2378-2386, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35451847

RESUMO

Using a realistic molecular catalyst system, we conduct scaling studies of ab initio molecular dynamics simulations using the popular CP2K code on both Intel Xeon CPU and NVIDIA V100 GPU architectures. Additional performance improvements were gained by finding more optimal process placement and affinity settings. Statistical methods were employed to understand performance changes in spite of the variability in runtime for each molecular dynamics timestep. Ideal conditions for CPU runs were found when running at least four MPI ranks per node, bound evenly across each socket. This study also showed that fully utilizing processing cores, with one OpenMP thread per core, performed better than when reserving cores for the system. The CPU-only simulations scaled at 70% or more of the ideal scaling up to 10 compute nodes, after which the returns began to diminish more quickly. Simulations on a single 40-core node with two NVIDIA V100 GPUs for acceleration achieved over 3.7× speedup compared to the fastest single 36-core node CPU-only version. These same GPU runs showed a 13% speedup over the fastest time achieved across five CPU-only nodes.


Assuntos
Simulação de Dinâmica Molecular , Software
5.
Phys Rev E ; 105(3-2): 035304, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428161

RESUMO

We identify configurational phases and structural transitions in a polymer nanotube composite by means of machine learning. We employ various unsupervised dimensionality reduction methods, conventional neural networks, as well as the confusion method, an unsupervised neural-network-based approach. We find neural networks are able to reliably recognize all configurational phases that have been found previously in experiment and simulation. Furthermore, we locate the boundaries between configurational phases in a way that removes human intuition or bias. This could be done before only by relying on preconceived, ad hoc order parameters.

6.
Nat Rev Chem ; 6(9): 653-672, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37117713

RESUMO

Machine learning (ML) is becoming a method of choice for modelling complex chemical processes and materials. ML provides a surrogate model trained on a reference dataset that can be used to establish a relationship between a molecular structure and its chemical properties. This Review highlights developments in the use of ML to evaluate chemical properties such as partial atomic charges, dipole moments, spin and electron densities, and chemical bonding, as well as to obtain a reduced quantum-mechanical description. We overview several modern neural network architectures, their predictive capabilities, generality and transferability, and illustrate their applicability to various chemical properties. We emphasize that learned molecular representations resemble quantum-mechanical analogues, demonstrating the ability of the models to capture the underlying physics. We also discuss how ML models can describe non-local quantum effects. Finally, we conclude by compiling a list of available ML toolboxes, summarizing the unresolved challenges and presenting an outlook for future development. The observed trends demonstrate that this field is evolving towards physics-based models augmented by ML, which is accompanied by the development of new methods and the rapid growth of user-friendly ML frameworks for chemistry.

7.
J Phys Chem Lett ; 12(26): 6227-6243, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196559

RESUMO

Machine learning (ML) is quickly becoming a premier tool for modeling chemical processes and materials. ML-based force fields, trained on large data sets of high-quality electron structure calculations, are particularly attractive due their unique combination of computational efficiency and physical accuracy. This Perspective summarizes some recent advances in the development of neural network-based interatomic potentials. Designing high-quality training data sets is crucial to overall model accuracy. One strategy is active learning, in which new data are automatically collected for atomic configurations that produce large ML uncertainties. Another strategy is to use the highest levels of quantum theory possible. Transfer learning allows training to a data set of mixed fidelity. A model initially trained to a large data set of density functional theory calculations can be significantly improved by retraining to a relatively small data set of expensive coupled cluster theory calculations. These advances are exemplified by applications to molecules and materials.

8.
J Phys Condens Matter ; 33(8): 084005, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33202401

RESUMO

We present a novel deep learning (DL) approach to produce highly accurate predictions of macroscopic physical properties of solid solution binary alloys and magnetic systems. The major idea is to make use of the correlations between different physical properties in alloy systems to improve the prediction accuracy of neural network (NN) models. We use multitasking NN models to simultaneously predict the total energy, charge density and magnetic moment. These physical properties mutually serve as constraints during the training of the multitasking NN, resulting in more reliable DL models because multiple physics properties are correctly learned by a single model. Two binary alloys, copper-gold (CuAu) and iron-platinum (FePt), were studied. Our results show that once the multitasking NN's are trained, they can estimate the material properties for a specific configuration hundreds of times faster than first-principles density functional theory calculations while retaining comparable accuracy. We used a simple measure based on the root-mean-squared errors to quantify the quality of the NN models, and found that the inclusion of charge density and magnetic moment as physical constraints leads to more stable models that exhibit improved accuracy and reduced uncertainty for the energy predictions.

9.
Nat Commun ; 11(1): 892, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060263

RESUMO

Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.

10.
J Phys Condens Matter ; 30(19): 195901, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29582782

RESUMO

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

12.
Sci Rep ; 7: 43482, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256544

RESUMO

Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These results suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25314564

RESUMO

We developed a heuristic method for determining the ground-state degeneracy of hydrophobic-polar (HP) lattice proteins, based on Wang-Landau and multicanonical sampling. It is applied during comprehensive studies of single-site mutations in specific HP proteins with different sequences. The effects in which we are interested include structural changes in ground states, changes of ground-state energy, degeneracy, and thermodynamic properties of the system. With respect to mutations, both extremely sensitive and insensitive positions in the HP sequence have been found. That is, ground-state energies and degeneracies, as well as other thermodynamic and structural quantities, may be either largely unaffected or may change significantly due to mutation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Proteínas/química , Proteínas/genética , Conformação Proteica , Dobramento de Proteína , Temperatura
14.
Artigo em Inglês | MEDLINE | ID: mdl-25215846

RESUMO

We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.


Assuntos
Simulação por Computador , Método de Monte Carlo , Temperatura , Adsorção , Algoritmos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Proteínas/química , Soluções , Água/química
15.
Phys Rev Lett ; 110(21): 210603, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745852

RESUMO

We introduce a parallel Wang-Landau method based on the replica-exchange framework for Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of complex systems, we apply it to different spin models including spin glasses, the Ising model, and the Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions. Without loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop machines.

16.
Artigo em Inglês | MEDLINE | ID: mdl-23410358

RESUMO

The thermodynamic behavior and structural properties of hydrophobic-polar (HP) lattice proteins interacting with attractive surfaces are studied by means of Wang-Landau sampling. Three benchmark HP sequences (48mer, 67mer, and 103mer) are considered with different types of surfaces, each of which attract either all monomers, only hydrophobic (H) monomers, or only polar (P) monomers, respectively. The diversity of folding behavior in dependence of surface strength is discussed. Analyzing the combined patterns of various structural observables, such as, e.g., the derivatives of the numbers of surface contacts, together with the specific heat, we are able to identify generic categories of folding and transition hierarchies. We also infer a connection between these transition categories and the relative surface strengths, i.e., the ratio of the surface attractive strength to the interchain attraction among H monomers. The validity of our proposed classification scheme is reinforced by the analysis of additional benchmark sequences. We thus believe that the folding hierarchies and identification scheme are generic for HP proteins interacting with attractive surfaces, regardless of chain length, sequence, or surface attraction.


Assuntos
Modelos Químicos , Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Adsorção , Sítios de Ligação , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
17.
BMC Bioinformatics ; 13 Suppl 5: S1, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22537005

RESUMO

BACKGROUND: The computational identification of RNAs in genomic sequences requires the identification of signals of RNA sequences. Shannon base pairing entropy is an indicator for RNA secondary structure fold certainty in detection of structural, non-coding RNAs (ncRNAs). Under the Boltzmann ensemble of secondary structures, the probability of a base pair is estimated from its frequency across all the alternative equilibrium structures. However, such an entropy has yet to deliver the desired performance for distinguishing ncRNAs from random sequences. Developing novel methods to improve the entropy measure performance may result in more effective ncRNA gene finding based on structure detection. RESULTS: This paper shows that the measuring performance of base pairing entropy can be significantly improved with a constrained secondary structure ensemble in which only canonical base pairs are assumed to occur in energetically stable stems in a fold. This constraint actually reduces the space of the secondary structure and may lower the probabilities of base pairs unfavorable to the native fold. Indeed, base pairing entropies computed with this constrained model demonstrate substantially narrowed gaps of Z-scores between ncRNAs, as well as drastic increases in the Z-score for all 13 tested ncRNA sets, compared to shuffled sequences. CONCLUSIONS: These results suggest the viability of developing effective structure-based ncRNA gene finding methods by investigating secondary structure ensembles of ncRNAs.


Assuntos
Entropia , Conformação de Ácido Nucleico , RNA não Traduzido/química , Algoritmos , Pareamento de Bases , Probabilidade , Dobramento de RNA , RNA não Traduzido/genética
18.
Comput Phys Commun ; 182(9): 1896-1899, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21804642

RESUMO

Using Wang-Landau sampling with suitable Monte Carlo trial moves (pull moves and bond-rebridging moves combined) we have determined the density of states and thermodynamic properties for a short sequence of the HP protein model. For free chains these proteins are known to first undergo a collapse "transition" to a globule state followed by a second "transition" into a native state. When placed in the proximity of an attractive surface, there is a competition between surface adsorption and folding that leads to an intriguing sequence of "transitions". These transitions depend upon the relative interaction strengths and are largely inaccessible to "standard" Monte Carlo methods.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 022101, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17930088

RESUMO

Motivated by the growing importance of fidelity in quantum critical phenomena, we establish a general relation between the fidelity and structure factor of the driving term in a Hamiltonian through the concept of fidelity susceptibility. Our discovery, as shown by some examples, facilitates the evaluation of fidelity in terms of susceptibility using well-developed techniques, such as density matrix renormalization group for the ground state, or Monte Carlo simulations for the states in thermal equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...