Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Talanta ; 276: 126227, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733935

RESUMO

Fatty liver disease affects at least 25 percent of the population worldwide and is a severe metabolic syndrome. Viscosity is closely related to fatty liver disease, so it is urgent to develop an effective tool for monitoring viscosity. Herein, a NIR fluorescent probe called MBC-V is developed for imaging viscosity, consisting of dimethylaniline and malonitrile-benzopyran. MBC-V is non-fluorescent in low viscosity solutions due to intramolecular rotation. In high viscosity solution, the intramolecular rotation of MBC-V is suppressed and the fluorescence is triggered. MBC-V has long emission wavelength at 720 nm and large Stokes shift about 160 nm. Moreover, MBC-V can detect changes in cell viscosity in fatty liver cells, and can image the therapeutic effects of drug in fatty liver cells. By taking advantage of NIR emission, MBC-V can be used as an imaging tool for fatty liver disease and a way to evaluate the therapeutic effect of drug for fatty liver disease.


Assuntos
Compostos de Anilina , Fígado Gorduroso , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Viscosidade , Camundongos , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/tratamento farmacológico , Compostos de Anilina/química , Imagem Óptica , Humanos , Benzopiranos/química , Benzopiranos/síntese química , Nitrilas/química
2.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731548

RESUMO

In order to study the synergistic effects of exogenous catalysts and in situ minerals in the reservoir during heavy oil aquathermolysis, in this paper, a series of simple supported transition metal complexes were prepared using sodium citrate, chloride salts and bentonite, and their catalytic viscosity reduction performances for heavy oil were investigated. Bentonite complex catalyst marked as B@Zn(II)L appears to be the most effective complex. B@Zn(II)L was characterized by scanning electron microscopy (SEM), Fourier-Transform Infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and N2 adsorption-desorption isotherms. Under optimized conditions, the viscosity of the heavy oil was decreased by 88.3%. The reaction temperature was reduced by about 70 °C compared with the traditional reaction. The results of the group composition analysis and the elemental content of the heavy oil indicate that the resin and asphaltene content decreases, and the saturated and aromatic HC content increases. The results of TGA and DSC of the heavy oil show that the macromolecular substances in the heavy oil were cracked into small molecules with low boiling points by the reaction. GC-MS examination of water-soluble polar compounds post-reaction indicates that B@Zn(II)L can diminish the quantity of polar substances in heavy oil and lower the aromatic nature of these compounds. Thiophene and quinoline were utilized as model compounds to investigate the reaction mechanism. GC-MS analysis revealed that C-C, C-N and C-S bonds were cleaved during the reaction, leading to a decrease in the viscosity of heavy oil.

3.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542905

RESUMO

Reversible emulsion drilling fluids can concentrate the advantages of water-based drilling fluids and oil-based drilling fluids. Most of the existing reversible emulsion drilling fluid systems are surfactant-based emulsifier systems, which have the disadvantage of poor stability. However, the use of modified nanoparticles as emulsifiers can significantly enhance the stability of reversible emulsion drilling fluids, but ordinary nanoparticles have the disadvantages of high cost and easily causing environmental pollution. In order to solve the shortcomings of the existing reversible emulsion drilling fluid system, the modified nanocrystalline cellulose was considered to be used as an emulsifier to prepare reversible emulsion drilling fluid. After research, the modified nanocrystalline cellulose NWX-3 can be used to prepare reversible emulsions, and on this basis, reversible emulsion drilling fluids can be constructed. Compared with the reversible emulsion drilling fluid stabilized by HRW-DMOB (1.3 vol.% emulsifier), the reversible emulsion drilling fluid stabilized by the emulsifier NWX-3 maintained a good reversible phase performance, filter cake removal, and oily drill cuttings treatment performance with less reuse of emulsifier (0.8 vol.%). In terms of temperature resistance (150 °C) and stability (1000 V < W/O emulsion demulsification voltage), it is significantly better than that of the surfactant system (temperature resistance 120 °C, 600 V < W/O emulsion demulsification voltage < 650 V). The damage of reservoir permeability of different types of drilling fluids was compared by physical simulation, and the damage order of core gas permeability was clarified: water-based drilling fluid > reversible emulsion drilling fluid > oil-based drilling fluid. Furthermore, the NMR states of different types of drilling fluids were compared as working fluids, and the main cause of core permeability damage was the retention of intrusive fluids in the core.

4.
Front Oncol ; 14: 1360831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529376

RESUMO

Background: Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB) can improve the adequacy of biopsy specimens and diagnostic yield of lung cancer. However, the lack of cytopathologists has restricted the wide use of ROSE. Objective: To develop a ROSE artificial intelligence (AI) system using deep learning techniques to differentiate malignant from benign lesions based on ROSE cytological images, and evaluate the clinical performance of the ROSE AI system. Method: 6357 ROSE cytological images from 721 patients who underwent transbronchial biopsy were collected from January to July 2023 at the Tangdu Hospital, Air Force Medical University. A ROSE AI system, composed of a deep convolutional neural network (DCNN), was developed to identify whether there were malignant cells in the ROSE cytological images. Internal testing, external testing, and human-machine competition were used to evaluate the performance of the system. Results: The ROSE AI system identified images containing lung malignant cells with the accuracy of 92.97% and 90.26% on the internal testing dataset and external testing dataset respectively, and its performance was comparable to that of the experienced cytopathologist. The ROSE AI system also showed promising performance in diagnosing lung cancer based on ROSE cytological images, with accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the internal testing dataset and external testing dataset respectively. More specifically, the agreement between the ROSE AI system and the experienced cytopathologist in diagnosing common types of lung cancer, including squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, demonstrated almost perfect consistency in both the internal testing dataset (κ = 0.930) and the external testing dataset (κ = 0.932). Conclusions: The ROSE AI system demonstrated feasibility and robustness in identifying specimen adequacy, showing potential enhancement in the diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a more diverse range of training data and leveraging advanced AI models with increased capabilities, along with rigorous validation through extensive multi-center randomized control assays, are crucial to guarantee the seamless and effective integration of this technology into clinical practice.

5.
ACS Appl Mater Interfaces ; 16(10): 12781-12792, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415631

RESUMO

The traditional methods for creating oxygen vacancies in materials present several challenges and limitations, such as high preparation temperatures, limited oxygen vacancy generation, and morphological destruction, which hinder the application of transition metal oxides in the field of zinc-air batteries (ZABs). In order to address these limitations, we have introduced a pioneering lithium reduction strategy for generating oxygen vacancies in δ-MnO2@MXene composite materials. This strategy stands out for its simplicity of implementation, applicability at room temperature, and preservation of the material's structural integrity. This research demonstrates that aqueous Ov-MnO2@MXene-5, with introduced oxygen vacancies, exhibits an outstanding oxygen reduction reaction (ORR) activity with an ORR half-wave potential reaching 0.787 V. DFT calculations have demonstrated that the enhanced activity could be attributed to adjustments in the electronic structure and alterations in adsorption bond lengths. These adjustments result from the introduction of oxygen vacancies, which in turn promote electron transport and catalytic activity. In the context of zinc-air batteries, cells with Ov-MnO2@MXene-5 as the air cathode exhibit outstanding performance, featuring a significantly improved maximum power density (198.3 mW cm-2) and long-term cycling stability. Through the innovative strategy of introducing oxygen vacancies, this study has successfully enhanced the electrochemical catalytic performance of MnO2, overcoming the limitations associated with traditional methods for creating oxygen vacancies. Consequently, this research opens up new avenues and directions for nonprecious metal catalyst application in ZABs.

7.
Anal Chim Acta ; 1285: 342024, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38057061

RESUMO

As a basic parameter of the intracellular microenvironment, viscosity is closely related to the development of cancer. Thus, it is necessary to utilize a sensitive tool to visualize the viscosity in tumor cells and mice, which is helpful for the diagnosis of cancer. Herein, a novel dual-modal probe (IX-V) that has a near-infrared fluorescence (NIRF) and photoacoustic (PA) response to viscosity is synthesized. In low viscosity media, the probe has no fluorescence. With the increase of viscosity, the fluorescence is produced in the near-infrared region due to the inhibition of the TICT process. At the same time, the probe shows different photoacoustic (PA) signals in different viscosity media. Most notably, the viscosity in tumor cells has been imaged successfully by the application of IX-V, and the probe can effectively distinguish cancer cells from normal cells co-cultured in one dish by the difference of fluorescence intensity. In addition, the probe has been used for dual-modal imaging (NIRF and PA) of viscosity in tumor mice, which provides a tool for exploring the relationship between viscosity and diseases. That is to say, IX-V can achieve complementary imaging effects and has great application prospects in the tumor diagnosis.


Assuntos
Corantes Fluorescentes , Neoplasias , Camundongos , Animais , Viscosidade , Linhagem Celular Tumoral , Fluorescência , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem
8.
Molecules ; 28(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959826

RESUMO

Reversible emulsification drilling fluids can achieve conversion between oil-based drilling fluids and water-based drilling fluids at different stages of drilling and completion, combining the advantages of both to achieve the desired drilling and completion effects. The foundation of reversible emulsion drilling fluids lies in reversible emulsions, and the core of a reversible emulsion is the reversible emulsifier. In this study, we prepared a reversible emulsifier, DMOB(N,N-dimethyl-N'-oleic acid-1,4-butanediamine), and investigated the reversible phase inversion process of reversible emulsions, including the changes in the reversible emulsifier (HLB) and its distribution at the oil-water interface (zeta potential). From the perspective of the acid-alkali response mechanism of reversible emulsifiers, we explored the reversible phase inversion mechanism of reversible emulsions and reversible emulsification drilling fluids. It was revealed that the reversible phase inversion of emulsions could be achieved by adjusting the pH of the emulsion system. Then the proportion of ionic surfactants changed in the oil-water interface and subsequently raised/lowered the HLB value of the composite emulsifier at the oil-water interface, leading to reversible phase inversion of the emulsion. The introduction of organic clays into reversible emulsification drilling fluid can affect the reversible conversion performance of the drilling fluids at the oil-water interface. Thus, we also investigated the influence of organic clays on reversible emulsions. It was demonstrated that a dosage of organic clay of ≤2.50 g/100 mL could maintain the reversible phase inversion performance of reversible emulsions. By analyzing the microstructure of the emulsion and the complex oil-water interface, we revealed the mechanism of the influence of organic clay on the reversible emulsion. Organic clay distributed at the oil-water interface not only formed a complex emulsifier with surfactants, but also affected the microstructure of the emulsion, resulting in a difficult acid-induced phase transition, an easy alkali-induced phase transition, and improved overall stability.

9.
Eur J Pharm Biopharm ; 193: 16-27, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865134

RESUMO

Triple-negative breast cancer (TNBC) has been regarded as the strongest malignancy in cases of breast cancer with a poor prognosis. The development of effective treatment strategies for TNBC has always been an urgent and unmet need. The intracellular redox balance is essential for maintaining TNBC cell malignancy. Disrupting intracellular redox balance by enlarging reactive oxygen species (ROS) generation and facilitating glutathione (GSH) depletion to amplify intracellular oxidative stress may be an alternative strategy to eliminate TNBC cells. However, inducing ROS generation and GSH depletion concurrently may be challenging. Herein, a diselenium linked-dimeric prodrug nanomedicine FA-SeSe-NPs was developed to break the intracellular redox homeostasis for TNBC targeted therapy. The dimeric prodrug was synthesized by conjugating two cucurbitacin B (CuB) molecules via one diselenium bond, which was subsequently assembled with FA-PEG-DSPE to form the final nanomedicine FA-SeSe-NPs. Using the active targeting potential of folic acid (FA), FA-SeSe-NPs could accumulate in tumor tissue with elevated levels and then be specifically internalized by cancer cells. In the high ROS and GSH conditions of TNBC cells, the diselenium bond can specifically respond to ROS to produce selenium free radicals to increase ROS and react with GSH to generate S-Se bond to deplete GSH. The released CuB further induced ROS production in TNBC cells. The diselenium bond and CuB functioned synergistically to amplify oxidative stress to kill the TNBC cells. Here, we provide a promising strategy to disrupt the intracellular redox balance of cancer cells for effective TNBC therapy.


Assuntos
Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Nanomedicina , Linhagem Celular Tumoral , Oxirredução , Nanopartículas/química
10.
Molecules ; 28(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836609

RESUMO

Oil is the "blood" and economic lifeblood of modern industry, but traditional light crude oil has been over-consumed, and it has been difficult to meet human demand for energy, so the exploitation of heavy oil is particularly important. In this paper, an oil-soluble catalyst was synthesized to catalyze the pyrolysis reaction of heavy oil in collaboration with reservoir minerals, so as to achieve efficient viscosity reduction of heavy oil and reduce production costs. The experimental results showed that Zn(II)O + K had the best synergistic viscosity reduction effect after the aquathermolysis of No. 1 oil sample under the reaction conditions of 180 °C, 4 h, 30% of water, and 0.2% of catalyst, respectively, and the viscosity reduction rate was 61.74%. Under the catalysis of the isopropanol system, the viscosity reduction rate was increased to 91.22%. A series of characterizations such as freezing point, thermogravimetric analysis, DSC analysis, component analysis, gas chromatography, wax crystal morphology analysis, and GC-MS analysis of aqueous organic matter were carried out on heavy oil after reaction by different reaction systems, and it could be verified that the viscosity of heavy oil was reduced. Finally, through the study of the reaction mechanism of the model compound, combined with the aqueous phase analysis, it can be clearly found that the depolymerization between macromolecules, the breaking of heteroatom chains, hydrogenation, ring opening, and other effects mainly occur during the reaction, thereby weakening the van der Waals force and hydrogen bond of the recombinant interval, inhibiting the formation of grid structure in heavy oil and effectively reducing the viscosity of heavy oil.

11.
Sci Bull (Beijing) ; 68(12): 1317-1326, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37268441

RESUMO

The Mesozoic terrestrial Jehol Biota of northern China exceeds the biomass and biodiversity of contemporaneous Lagerstätten. From 135 to 120 Ma, biotic radiation may have responded to the peak destruction of the North China Craton. However, the direct mechanistic link between geological and biological evolution is unclear. Phosphorus (P), a bio-essential nutrient, can be supplied by weathering of volcanics in terrestrial ecosystems. The middle-late Mesozoic volcanic-sedimentary sequences of northern China are amazingly rich in terrestrial organisms. Here we demonstrate episodic increases in P delivery, biological productivity, and species abundance in these strata to reveal the coevolution of volcanism and terrestrial biotas. A massive P supply from the weathering of voluminous volcanic products of craton destruction thus supported a terrestrial environment conducive to the high prosperity of the Jehol Biota. During the nascent stage of craton destruction, such volcanic-biotic coupling can also account for the preceding Yanliao Biota with relatively fewer fossils.


Assuntos
Ecossistema , Fósforo , Biota , Evolução Biológica , China
12.
Talanta ; 265: 124815, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348355

RESUMO

Cancer is one of the major diseases that seriously endanger the health of all mankind. Accurate diagnosis of early cancer is the most promising way to reduce cancer harm and improve patient survival. However, many developed fluorescent probes for cancer imaging only have the function of identifying one marker, which cannot meet the needs of accurate diagnosis. Here, a fluorescent nanoprobe (CPH@ZIF-90) utilizing ZIF-90 to encapsulate SO2-sensitive dye (CPH) is synthesized for the sequential detection of ATP and SO2. The nanoprobe first interacts with ATP to release CPH, thus increasing the fluorescence at 685 nm and realizing the near-infrared (NIR) fluorescence detection of ATP. Then, SO2 acts on the released CPH through nucleophilic addition, affecting the π-conjugated structure of CPH and resulting in enhanced fluorescence at 580 nm. CPH@ZIF-90 exhibits satisfactory sensitivity and selectivity for sequential detection of ATP and SO2. Excitedly, CPH@ZIF-90 can sequentially image the endogenous ATP and SO2 in cells, showing sensitive fluorescence changes in dual channels (red and green). Due to the NIR emission properties of CPH@ZIF-90 and its ability to enrich in tumor, it is applied to monitor ATP and SO2 in mice and distinguish normal mice from tumor mice. The ability of CPH@ZIF-90 to sequentially detect two cancer-related biomarkers makes it provide meaningful assistance in accurate early diagnosis of cancer.


Assuntos
Neoplasias , Dióxido de Enxofre , Animais , Camundongos , Trifosfato de Adenosina , Corantes Fluorescentes/química , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem
13.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110874

RESUMO

Four products were obtained from sodium dodecylbenzene sulfonate (SDBS) and formaldehyde (40% solution) using a simple reaction. The products were characterized by TGA, IR, UV and MS to confirm the major chemicals in each sample. The new products could reduce the interfacial tension between oil and water in the experimental temperature range further compared to SDBS. The emulsion ability was also enhanced by SDBS-1 to SDBS-4. The oil-displacement efficiencies of SDBS-1 to SDBS-4 were obviously higher than that of SDBS, and the oil-displacement efficiency of SDBS-2 was the best, with an efficiency of 25%. The experimental results all indicate that these products have an excellent ability to reduce oil-water interfacial tension and that they can be used in the oil and petrochemical industry for oil production and have certain practical uses.

14.
Gels ; 9(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102897

RESUMO

Frequent oil spills have caused serious consequences to the ecosystem and environment. Therefore, in order to reduce and eliminate the impact of oil spills on biology and the environment, oil spill remediation materials must be considered. As a kind of cheap and biodegradable natural organic cellulose oil-absorbing material, straw has an important practical significance in the treatment of oil spills. In order to improve the ability of rice straw to absorb crude oil, rice straw was first treated with acid and was then modified with sodium dodecyl sulfate (SDS) through a simple charge effect. Finally, the performance of oil absorption was tested and evaluated. The results illustrate that the oil absorption performance was greatly improved under the conditions of 10% H2SO4, for a 90 min reaction at 90 °C, under 2% SDS, and reacted for 120 min at 20 °C, and the rate of adsorption for rice straw to crude oil was raised by 3.33 g/g (0.83 to 4.16). Then, the rice stalks before and after the modification were characterized. Contact angle analysis shows that the modified rice stalks display better hydrophobic-lipophilic properties than unmodified rice stalks. The rice straw was characterized by XRD and TGA, and the surface structure of the rice straw was characterized by FTIR and SEM, which explain the mechanism of surface-modified rice straws with SDS to improve their oil absorption capacity.

15.
Molecules ; 28(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985623

RESUMO

To study the synergistic catalysis of an ex situ catalyst and in situ clay in the aquathermolysis of heavy oil, in this paper, a series of bentonite-supported catechol-metal complexes were prepared, and the catalytic viscosity reduction performance in the aquathermolysis of heavy oil was investigated. Under the optimized conditions, the viscosity can be reduced by 73%, and the pour point can be lowered by 15.0 °C at most, showing the synergistic catalysis of the ex situ catalyst and in situ clay in this aquathermolytic reaction. Thermogravimetry, physical adsorption-desorption, and scanning electron microscopy were conducted to characterize the thermal stability and microstructure of the ex situ catalyst. The components of the heavy oil before and after the reaction were fully characterized. Six model compounds were used to simulate the aquathermolysis reaction process. In order to study the mechanism of viscosity reduction after the catalytic aquathermolysis reaction, the compounds were analyzed by GC-MS. It is believed that these results will be beneficial in the future for related research in this field.

16.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615622

RESUMO

Graphitic carbon nitride (g-C3N4), with facile synthesis, unique structure, high stability, and low cost, has been the hotspot in the field of photocatalysis. However, the photocatalytic performance of g-C3N4 is still unsatisfactory due to insufficient capture of visible light, low surface area, poor electronic conductivity, and fast recombination of photogenerated electron-hole pairs. Thus, different modification strategies have been developed to improve its performance. In this review, the properties and preparation methods of g-C3N4 are systematically introduced, and various modification approaches, including morphology control, elemental doping, heterojunction construction, and modification with nanomaterials, are discussed. Moreover, photocatalytic applications in energy and environmental sustainability are summarized, such as hydrogen generation, CO2 reduction, and degradation of contaminants in recent years. Finally, concluding remarks and perspectives on the challenges, and suggestions for exploiting g-C3N4-based photocatalysts are presented. This review will deepen the understanding of the state of the art of g-C3N4, including the fabrication, modification, and application in energy and environmental sustainability.


Assuntos
Luz , Catálise
17.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202642

RESUMO

The reversible emulsion drilling fluid system combines the advantages of both oil-based and water-based drilling fluids, which can achieve ideal results in different stages of drilling and completion, and the system can be reused to effectively reduce costs. However, the research on reversible emulsions mainly focuses on the development of new reversible emulsifiers, while the specific phase transformation mechanism of reversible emulsion systems is still unclear. In this paper, a stable reversible emulsion was prepared using the reversible emulsifier DMOB as a raw material, and the reversible emulsion performance of the alkali response from the O/W emulsion phase to the W/O emulsion was studied. The microstructure of reversible emulsions was studied by a microscope, a cryogenic transmission electron microscopy, and a laser particle size analyzer. The changes in macroscopic properties of reversible emulsions in the process of alkali conversion were studied by pH, conductivity, demulsification voltage, static stability, viscosity, rheology, and other indicators, and the conversion mechanism of reversible emulsions from O/W emulsion ⟶ bicontinuous structure ⟶ O/W/O emulsion ⟶ W/O emulsion was clarified. The details are as follows: in the first stage, when the amount of NaOH ≤ 0.43 vol.%, the overall particle size of the emulsion decreases first and then increases with the increase in NaOH dosage. In the second stage, when the amount of NaOH was 0.45 vol.%, a double continuous structure was formed inside the emulsion. In the third stage, when the amount of NaOH is 0.48 vol.%, the O/W/O emulsion is formed, and with the increase in stirring time, the internal oil droplets gradually accumulate and are discharged from the water droplets, and finally, the W/O emulsion is formed. In the fourth stage, when the dosage of 0.50 vol.% ≤ NaOH ≤ 5.00 vol.%, the W/O emulsion was formed, and with the increase of NaOH dosage, the structure and compactness between water droplets increased first and then decreased. In the whole process, with the increase in the amount of NaOH solution, the total particle size of the emulsion first decreased and then increased.

18.
J Acoust Soc Am ; 152(6): 3523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36586826

RESUMO

In this paper, we present a gridless algorithm to recover an attenuated acoustic field without knowing the range information of the source. This algorithm provides the joint estimation of horizontal wavenumbers, mode amplitudes, and acoustic attenuation. The key idea is to approximate the acoustic field in range as a finite sum of damped sinusoids, for which the sinusoidal parameters convey the ocean information of interest (e.g., wavenumber, attenuation, etc.). Using an efficient finite rate of innovation algorithm, an accurate recovery of the attenuated acoustic field can be achieved, even if the measurement noise is correlated and the range of the source is unknown. Moreover, the proposed method is able to perform joint recovery of multiple sensor data, which leads to a more robust field reconstruction. The data used here are acquired from a vertical line array at different depths measuring a moving source at several ranges. We demonstrate the performance of the proposed algorithm both in synthetic simulations and real shallow water evaluation cell experiment 1996 data.

19.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364285

RESUMO

The treatment of oilfield wastewater with high crude oil content and complex composition is a problem requiring considerable attention. In order to effectively remove crude oil contained in wastewater, in this work, rice straw, as an oil-absorbing material, was modified and used as a sorbent for crude oil. Rice straw was modified with alkali and cetyltrimethylammonium chloride (CTAC) by simple substitution reaction. The adsorption capacity of modified rice straw for oil was evaluated. The results illustrate that the adsorption rate of rice straw for crude oil was increased from 0.83 to 8.49 g/g, with the optimal conditions of 18% NaOH reacted for 90 min at 50 °C and 2% CTAC reacted for 60 min at 20 °C. The proposed modification method could be used for different materials to enhance the adsorption rate. The results of the contact angle test show that the modified straw changed from hydrophilic to hydrophobic, which may be the main reason for the improvement in the oil absorption rate. Finally, the surface structure of rice straw was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption-desorption isotherms, which further confirmed the hydrophobicity of the modified rice straw.


Assuntos
Oryza , Petróleo , Purificação da Água , Campos de Petróleo e Gás , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Oryza/química
20.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364639

RESUMO

Solid-free drilling fluid has more advantages as a new type of drilling fluid compared with traditional drilling fluid, such as improving drilling efficiency, protecting oil and not having clay particles clog the oil and gas layer. In this study, Zn/Cu/Fe-doped magnesium-aluminum hydroxide (Mg-Al MMH) was prepared using the co-precipitation method and evaluated in solid-free drilling fluid. The inhibition mechanism of synthesized hydroxide was analyzed by X-ray diffraction, laser particle-size analysis and thermogravimetric analysis. The samples were directly used as drilling fluid base muds for performance evaluation. The results showed that the linear expansion rate of 4% M6-Fe was only 12.32% at room temperature within 2 h, that the linear expansion rate was 20.28% at 90 °C and that the anti-swelling rate was 81.16% at room temperature, indicating that it has a strong inhibition ability at both room temperature and at high temperatures. Meanwhile, the possibility of multi-mixed metal hydroxide as a drilling fluid base mud is discussed in this study. We found that 4% M6-Fe exhibited low viscosity, a high YP/PV ratio and high temperature resistance, and its apparent viscosity retention rate reached 100% rolled at 200 °C for 16 h, with a YP/PV ratio of 2.33.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...