Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(27): 31054-31065, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35763722

RESUMO

The power conversion efficiency (PCE) of halogenated solvent spin-coated organic solar cells (OSCs) has been boosted to a high level (>18%) by developing efficient photovoltaic materials and precise morphological control. However, the PCE of OSCs prepared from non-halogenated solvents and with a scalable printing process is far behind, limited by tough morphology manipulation. Herein, we have fabricated ternary OSCs by using layer-by-layer (LBL) blade-coating and a non-halogenated solvent. The ternary OSCs based on the PM6:IT-M(1:0.2)/BTP-eC9 active layer are processed with the hydrocarbon solvent 1,2,4-trimethylbenzene with no need of any additives and post-treatment. The vertical donor/acceptor distribution is optimized by LBL blade-coating within the PM6:IT-M(1:0.2)/BTP-eC9 active layer. The cascade acceptor IT-M blended in PM6 not only attenuates the damage of BTP-eC9 to the PM6 crystallization, leading to a dense nanofiber-like morphology, but also prefers to reside between PM6 and BTP-eC9 to form a cascade energy level alignment for a fast charge-transfer process. Finally, the improved morphology and crystallization lead to a reduced molecular recombination, low energy loss, and high open-circuit voltage. The prepared non-halogenated solvent and LBL blade-coated OSCs achieve a PCE of 17.16%. The work provides an approach to fabricate hydrocarbon solvent-processed high-performance OSCs by employing LBL blade-coating and a ternary strategy.

2.
ACS Appl Mater Interfaces ; 13(8): 10239-10248, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605134

RESUMO

Benefitting from narrow band gap nonfullerene acceptors, continually increasing power conversion efficiency (PCE) endows organic solar cells (OSCs) with great potential for commercial application. Fabricating high-performance OSCs with potential for large-scale coating and nonhalogenated solvent processing is a necessity. Herein, we have proposed the use of nonhalogenated solvents combined with high-temperature blade coating to prepare a PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]):Y6 (2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)))blend active layer. The resultant OSCs deliver a PCE of 15.51% when the PM6:Y6 active layer is blade-coated at 90 °C in nonhalogenated o-xylene (o-XY) host solvent containing 1,2-dimethylnaphthalene (DMN) additive. It is found that high-temperature blade coating and nonhalogenated solvent additive DMN can suppress excessive aggregation of Y6 and enhance the crystallinity of PM6 and Y6 by regulating the dynamic process of active layer formation. Finally, an optimized blend morphology with nanofibrous phase separation and enhanced crystallinity are achieved for the PM6:Y6 active layer prepared with high-temperature blade coating and nonhalogenated o-XY:DMN solvents, which not only shortens the film-drying time but also leads to increased charge generation, transport, and collection efficiency. The 1.00 cm2 OSCs prepared with high-temperature blade coating and nonhalogenated solvents exhibit a high PCE of 13.87%. This approach shows great potential for large-area fabrication of OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...