Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37494176

RESUMO

The pedestrian trajectory prediction task is an essential component of intelligent systems. Its applications include but are not limited to autonomous driving, robot navigation, and anomaly detection of monitoring systems. Due to the diversity of motion behaviors and the complex social interactions among pedestrians, accurately forecasting their future trajectory is challenging. Existing approaches commonly adopt generative adversarial networks (GANs) or conditional variational autoencoders (CVAEs) to generate diverse trajectories. However, GAN-based methods do not directly model data in a latent space, which may make them fail to have full support over the underlying data distribution. CVAE-based methods optimize a lower bound on the log-likelihood of observations, which may cause the learned distribution to deviate from the underlying distribution. The above limitations make existing approaches often generate highly biased or inaccurate trajectories. In this article, we propose a novel generative flow-based framework with a dual-graphormer for pedestrian trajectory prediction (STGlow). Different from previous approaches, our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors. Besides, our method has clear physical meanings for simulating the evolution of human motion behaviors. The forward process of the flow gradually degrades complex motion behavior into simple behavior, while its reverse process represents the evolution of simple behavior into complex motion behavior. Furthermore, we introduce a dual-graphormer combined with the graph structure to more adequately model the temporal dependencies and the mutual spatial interactions. Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.

2.
IEEE J Biomed Health Inform ; 27(2): 992-1003, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36378793

RESUMO

In computer-aided diagnosis and treatment planning, accurate segmentation of medical images plays an essential role, especially for some hard regions including boundaries, small objects and background interference. However, existing segmentation loss functions including distribution-, region- and boundary-based losses cannot achieve satisfactory performances on these hard regions. In this paper, a boundary-sensitive loss function with location constraint is proposed for hard region segmentation in medical images, which provides three advantages: i) our Boundary-Sensitive loss (BS-loss) can automatically pay more attention to the hard-to-segment boundaries (e.g., thin structures and blurred boundaries), thus obtaining finer object boundaries; ii) BS-loss also can adjust its attention to small objects during training to segment them more accurately; and iii) our location constraint can alleviate the negative impact of the background interference, through the distribution matching of pixels between prediction and Ground Truth (GT) along each axis. By resorting to the proposed BS-loss and location constraint, the hard regions in both foreground and background are considered. Experimental results on three public datasets demonstrate the superiority of our method. Specifically, compared to the second-best method tested in this study, our method improves performance on hard regions in terms of Dice similarity coefficient (DSC) and 95% Hausdorff distance (95%HD) of up to 4.17% and 73% respectively. In addition, it also achieves the best overall segmentation performance. Hence, we can conclude that our method can accurately segment these hard regions and improve the overall segmentation performance in medical images.


Assuntos
Diagnóstico por Computador , Processamento de Imagem Assistida por Computador , Humanos , Diagnóstico por Computador/métodos , Diagnóstico por Computador/normas , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Conjuntos de Dados como Assunto
3.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4228-4242, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33606640

RESUMO

In most of the existing representation learning frameworks, the noise contaminating the data points is often assumed to be independent and identically distributed (i.i.d.), where the Gaussian distribution is often imposed. This assumption, though greatly simplifies the resulting representation problems, may not hold in many practical scenarios. For example, the noise in face representation is usually attributable to local variation, random occlusion, and unconstrained illumination, which is essentially structural, and hence, does not satisfy the i.i.d. property or the Gaussianity. In this article, we devise a generic noise model, referred to as independent and piecewise identically distributed (i.p.i.d.) model for robust presentation learning, where the statistical behavior of the underlying noise is characterized using a union of distributions. We demonstrate that our proposed i.p.i.d. model can better describe the complex noise encountered in practical scenarios and accommodate the traditional i.i.d. one as a special case. Assisted by the proposed noise model, we then develop a new information-theoretic learning framework for robust subspace representation through a novel minimum weighted error entropy criterion. Thanks to the superior modeling capability of the i.p.i.d. model, our proposed learning method achieves superior robustness against various types of noise. When applying our scheme to the subspace clustering and image recognition problems, we observe significant performance gains over the existing approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA