Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 206: 116676, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991610

RESUMO

Understanding mercury (Hg) concentrations in mesopelagic and mid-trophic fishes is important for assessing Hg accumulation in oceanic ecosystems and higher-order predators. This study measured total Hg (THg) concentrations in the whole body of 16 abundant mesopelagic fish species sampled in two distinct sites within the Tasman Sea. Across all species, total Hg concentrations ranged from 0.02 to 0.48 µg g-1 dry weight (0.01 to 0.15 µg g-1 wet weight). Total Hg concentrations varied with vertical migration patterns, with shallower migrators exhibiting higher THg. Females typically had statistically higher THg concentrations than males. Positive correlations between THg concentration and standard length were observed for some but not all species. At the community level, THg concentrations correlated positively with estimated trophic position and foraging habitat, as inferred by stable isotope values. These findings contribute to our understanding of Hg cycling in oceanic ecosystems and the potential for biomagnification in oceanic top-order predators.

2.
Micromachines (Basel) ; 15(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38930635

RESUMO

To address surface morphological defects that have a destructive effect on the epitaxial wafer from the aspect of 4H-SiC epitaxial growth, this study thoroughly examined many key factors that affect the density of defects in 4H-SiC epitaxial wafer, including the ratio of carbon to silicon, growth time, application of a buffer layer, hydrogen etching and other process parameters. Through systematic experimental verification and data analysis, it was verified that when the carbon-silicon ratio was accurately controlled at 0.72, the density of defects in the epitaxial wafer was the lowest, and its surface flatness showed the best state. In addition, it was found that the growth of the buffer layer under specific conditions could effectively reduce defects, especially surface morphology defects. This provides a new idea and method for improving the surface quality of epitaxial wafers. At the same time, we also studied the influence of hydrogen etching on the quality of epitaxial wafers. The experimental results show that proper hydrogen etching can optimize surface quality, but excessive etching may lead to the exposure of substrate defects. Therefore, it is necessary to carefully control the conditions of hydrogen etching in practical applications to avoid adverse effects. These findings have important guiding significance for optimizing the quality of epitaxial wafers.

3.
Bioresour Technol ; 406: 131010, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901750

RESUMO

The fate of sulfur (S) was controlled by a complex interaction of abiotic and microbial reactions in constructed wetlands (CWs). Although zero-valent iron (ZVI) was generally considered to promote nitrogen (N) and S cycle by providing electrons, but its binding effect on sulfate (SO42--S) removal with the rhizosphere oscillating redox conditions had not been determined. This study found that the presence of plants increased SO42-_S removal in Con-CW, while decreased it by 3.93 % in ZVI-CW accompanied by the decrease of S content in the rhizosphere substrates. The enrichment of S oxidation genes (soxA/Y and yedZ), organic S decomposition genes (aslA) and plants radial oxygen loss (ROL) accelerated the transformation of solid-phase S to SO42--S, resulting in ZVI-CW turn from S sink to S source. Overall, the source-sink transformation provided a theoretical guidance for comprehending S cycling in CWs.

4.
Hortic Res ; 11(6): uhae111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898962

RESUMO

Eating fruits and vegetables loaded with natural antioxidants can boost human health considerably and help fight off diseases linked to oxidative stress. Hydrogen has unique antioxidant effects. However, its low-solubility and fast-diffusion has limited its applications in agriculture. Integration of hydrogen with nanobubble technology could address such problems. However, the physiological adaptation and response mechanism of crops to hydrogen nanobubbles is still poorly understood. Antioxidant concentrations of lycopene, ascorbic acid, flavonoids, and resveratrol in hydrogen nanobubble water drip-irrigated tomato fruits increased by 16.3-264.8% and 2.2-19.8%, respectively, compared to underground water and oxygen nanobubble water. Transcriptomic and metabolomic analyses were combined to investigate the regulatory mechanisms that differed from the controls. Comprehensive multi-omics analysis revealed differences in the abundances of genes responsible for hormonal control, hydrogenase genes, and necessary synthetic metabolites of antioxidants, which helped to clarify the observed improvements in antioxidants. This is the first case of hydrogen nanobubble water irrigation increasing numerous natural antioxidant parts in fruits. Considering the characteristics of hydrogen and the application of the nanobubble technology in agriculture, the findings of the present study could facilitate the understanding of the potential effects of hydrogen on biological processes and the mechanisms of action on plant growth and development.

5.
Mar Pollut Bull ; 204: 116531, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823373

RESUMO

This study investigates the presence of plastic and non-plastic microparticles in the gastrointestinal tracts of two deep-sea sharks, Etmopterus molleri (n = 118) and Squalus mitsukurii (n = 6), bycatch from the East China Sea continental shelf. We found a total of 117 microparticles, predominantly fibres (67.52 %), with blue (31.62 %) and black (23.94 %) being the most prevalent colours. E. molleri contained 70 microparticles (0.63 ± 0.93 items/shark), 61.42 % non-plastics like viscose and cotton, while plastics included polyethylene, polyethylene terephthalate, and acrylic. Despite S. mitsukurii's limited sample size, the results show that it takes in a lot of microparticles (47 microparticles, 7.83 ± 2.64 items/shark), 57.44 % non-plastics (viscose, cotton, and ethyl cellulose), and 42.56 % plastics. A positive correlation between microparticle presence and total length was observed for E. molleri. These results provide initial data on microparticle ingestion by these species, highlighting potential ecological risks and trophic transfer implications in deep-sea ecosystems.


Assuntos
Monitoramento Ambiental , Plásticos , Tubarões , Animais , China , Estômago , Oceanos e Mares
6.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893876

RESUMO

In this study, we systematically explore the impact of C/Si ratio, pre-carbonization time, H2 etching time, and growth pressure on the buffer layer and subsequent epitaxial layer of 6-inch 4H-SiC wafers. Our findings indicate that the buffer layer's C/Si ratio and growth pressure significantly influence the overall quality of the epitaxial wafer. Specifically, an optimal C/Si ratio of 0.5 and a growth pressure of 70 Torr yield higher-quality epitaxial layers. Additionally, the pre-carbonization time and H2 etching time primarily affect the uniformity and surface quality of the epitaxial wafer, with a pre-carbonization time of 3 s and an H2 etching time of 3 min found to enhance the surface quality of the epitaxial layer.

8.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793173

RESUMO

In this study, a 4H-SiC homoepitaxial layer was grown on a 150 mm 4° off-axis substrate using a horizontal hot wall chemical vapor deposition reactor. Comparing C3H8 and C2H4 as C sources, the sample grown with C2H4 exhibited a slower growth rate and lower doping concentration, but superior uniformity and surface roughness compared to the C3H8-grown sample. Hence, C2H4 is deemed more suitable for commercial epitaxial wafer growth. Increasing growth pressure led to decreased growth rate, worsened thickness uniformity, reduced doping concentration, deteriorated uniformity, and initially improved and then worsened surface roughness. Optimal growth quality was observed at a lower growth pressure of 40 Torr. Furthermore, the impact of buffer layer growth on epitaxial quality varied significantly based on different C/Si ratios, emphasizing the importance of selecting the appropriate conditions for subsequent device manufacturing.

9.
RSC Adv ; 14(23): 16574-16583, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38779386

RESUMO

In this study, the epitaxial growth of 6-inch n-type 4° off-axis Si-face substrates using a horizontal hot-wall LPCVD system was investigated. The study explored the epitaxial growth under different source gas flow rates, growth pressures, and pre-etching times, with particular emphasis on their effects on epitaxial growth rate, epitaxial layer thickness uniformity, doping concentration and uniformity, and epitaxial layer surface roughness. The observation was made that the increase in source gas flow rate led to variations in dopant concentration due to different transport models between nitrogen gas and source gas. Additionally, with the increase in etching time, overetching phenomena occurred, resulting in changes in both dopant concentration and uniformity. Furthermore, the relationships between these three factors and their corresponding indicators were explained by combining the CVD growth process with the laminar flow model. These observed patterns are beneficial for further optimizing growth conditions in industrial settings, ultimately enhancing the quality of the growth process.

10.
Chemosphere ; 357: 142071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641290

RESUMO

To overcome the global water shortage, the treated wastewater is increasingly utilized in agricultural irrigation, and thus reducing freshwater consumption and increasing the water sustainability. Drip irrigation technology is the most appropriate irrigation method to utilize these water sources. However, its operating performance is negatively affected by calcium carbonate (CaCO3) scaling, which is one of the most dominant precipitations and also closely related to dissolved ions and the hydraulic characteristics inside irrigation systems. Thus, the effects of eight common dissolved ions (K+, Mg2+, Mn2+, Zn2+, Fe3+, NO3-, SO42-, and PO43-) in these water sources and four hydraulic shear stresses (0, 0.2, 0.4, and 0.6 Pa) on CaCO3 scaling formation were assessed in this study. Results showed that CaCO3 scaling was primarily formed of calcite and aragonite. Fe3+ would significantly accelerate the CaCO3 scaling accumulation, as it reduced the unit cell volume and chemical bonds of calcite, enhancing calcite adhesion and stability. On the other hand, Mg2+, Mn2+, NO3-, SO42-, and PO43- significantly inhibited CaCO3 scaling. Among them, Mg2+, Mn2+, and PO43- followed the typical water chemical precipitation rule, while NO3- increased water molecule diffusion rate and thus decreased the possibility that Ca2+ and CO32- to precipitate. SO42- grabbed the binding point belonging to CO32- and was adsorbed on the calcite crystal, which inhibited crystal growth. However, those treatments under K+ and Zn2+ did not reach a significant level due to their solubleness. During the precipitation of CaCO3, there were significant (p < 0.01) interactions between dissolved ions and hydraulic shear stresses. When hydraulic shear stresses varied, the effects of Fe3+ and SO42- on the CaCO3 scaling were relatively weakened, while that of Mg2+ was relatively strengthened. In return, dissolved ions affected the effect of hydraulic shear stresses on CaCO3 scaling. Overall, the results obtained could provide theoretical reference for high-efficiency utilization of treated wastewater for agricultural irrigation through the management of CaCO3 scaling.


Assuntos
Carbonato de Cálcio , Águas Residuárias , Carbonato de Cálcio/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Íons/química , Irrigação Agrícola/métodos , Precipitação Química
11.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672476

RESUMO

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Assuntos
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Camundongos , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Masculino , Transmissão Sináptica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
12.
J Fish Biol ; 104(6): 1732-1742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445757

RESUMO

The oceanic whitetip shark, Carcharhinus longimanus, is a highly migratory, epipelagic top predator that is classified as critically endangered. Although this species is widely distributed throughout the world's tropical oceans, its assumed mobility and pelagic behavior limit studies to derive required lifetime data for management. To address this data deficiency, we assessed variation in the habitat use of C. longimanus by oceanic region and over ontogeny through time series trace element and stable isotope values conserved along the vertebral centra (within translucent annulus bands) of 13 individuals sampled from the central and eastern Pacific Ocean. Elemental ratios of Mg:Ca, Mn:Ca, Fe:Ca, Zn:Ca, and Ba:Ca varied significantly among individuals from both sampling regions while principal component analysis of combined standardized elements revealed minimal overlap between the two areas. The limited overlap was also in agreement with stable isotope niches. These findings indicate that C. longimanus exhibit a degree of fidelity to sampling regions but also connectivity in a proportion of the population. The relatively stable Sr:Ca ratio supports its occurrence in oceanic environments. The decreasing trends in Ba:Ca, Mn:Ca, and Zn:Ca ratios, as well as in carbon and nitrogen isotope values along vertebral transects, indicate that C. longimanus undergo a directional habitat shift with age. Combined elemental and stable isotope values in vertebral centra provide a promising tool for elucidating lifetime data for complex pelagic species. For C. longimanus, management will need to consider subpopulation movement behavior in the Pacific to minimize the potential for localized depletions. Further work is now required to sample individuals across the entire Pacific and to link these findings with genetic and movement data to define population structure.


Assuntos
Ecossistema , Tubarões , Coluna Vertebral , Oligoelementos , Animais , Oceano Pacífico , Oligoelementos/análise , Feminino , Masculino , Isótopos/análise
13.
Nat Commun ; 15(1): 2251, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480716

RESUMO

Accelerating efforts for the Sustainable Development Goals requires understanding their synergies and trade-offs at the national and sub-national levels, which will help identify the key hurdles and opportunities to prioritize them in an indivisible manner for a country. Here, we present the importance of the 17 goals through synergy and trade-off networks. Our results reveal that 19 provinces show the highest trade-offs in SDG13 (Combating Climate Change) or SDG5 (Gender Equality) consistent with the national level, with other 12 provinces varying. 24 provinces show the highest synergies in SDG1 (No Poverty) or SDG6 (Clean Water and Sanitation) consistent with the national level, with the remaining 7 provinces varying. These common but differentiated SDG priorities reflect that to ensure a coordinated national response, China should pay more attention to the provincial situation, so that provincial governments can formulate more targeted policies in line with their own priorities towards accelerating sustainable development.


Assuntos
Políticas , Desenvolvimento Sustentável , China , Pobreza , Mudança Climática
14.
Bioresour Technol ; 396: 130455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360221

RESUMO

Nanobubble (NB) represents a promising practice for mitigating fouling in biogas slurry distribution systems. However, its anti-fouling effectiveness and optimal use dosage are unknown. This study investigated the NB anti-fouling capacity at six concentrations (0 %-100 %, denoting the ratio of maximum NB-infused water; particle concentrations in 0 % and 100 % ratios were 1.08 × 107 and 1.19 × 109 particles mL-1, respectively). Results showed that NB effectively mitigated multiple fouling at 50 %-100 % ratios, whereas low NB concentration exacerbated fouling. NB functioned both as an activator and a bactericide for microorganisms, significantly promoting biofouling at 5 %-25 %, and inhibiting biofouling at 50 %-100 %. Owing to an enhanced biofilm biomineralization ability, low NB concentration aggravated precipitate fouling, whereas high NB doses effectively mitigated precipitates. Additionally, higher NB concentrations demonstrated superior control efficiency against particulate fouling. This study contributes insights into NB effectiveness in controlling various fouling types within wastewater distribution systems.


Assuntos
Incrustação Biológica , Purificação da Água , Águas Residuárias , Biocombustíveis , Purificação da Água/métodos , Incrustação Biológica/prevenção & controle , Biofilmes , Membranas Artificiais
15.
Chemosphere ; 352: 141373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340996

RESUMO

Recycling saline wastewater for agricultural irrigation offer a promising solution to address both water scarcity and anthropogenic pollution. However, organic-inorganic fouling in saline wastewater irrigation systems (SWIS) poses significant technical and economic challenges. Traditional chemical biocides are currently insufficient for controlling composite organic-inorganic fouling and may pose environmental hazards. This study proposed a greener approach using organic acid (OA) fertilizers to alleviate organic-inorganic fouling in agricultural SWIS. The treatment performances were assessed employing four types of OA fertilizers (i.e., humic acid, alginic acid, nucleotide, and ammonia acid) and a negative control. Results showed that three types of OA, i.e., alginic acid, nucleotide, and ammonia acid, effectively reduced the total SWIS fouling content by 11.2%-57.4%, whereas humic acid exacerbated fouling by 11.2%-57.4%. Specifically, all types of OA significantly mitigated the content of inorganic fouling (precipitates and silicates) by 10.7%-42.3% by forming loosed and sparser structures. However, OA exhibited minimum effects on controlling silica fouling. Meanwhile, except the humic acid, other types of OA decreased the total content of organic fouling by 17.2%-39.5% by reducing the content of humic substances and building block fractions. In addition, the significant binary interactions of organic-inorganic fouling indicated the active role of calcium silica and biomineralization fouling. These findings provide insight into the development of appropriate and eco-friendly antifouling strategies for SWIS, with implications for recycling and reusing saline wastewater.


Assuntos
Irrigação Agrícola , Purificação da Água , Substâncias Húmicas , Águas Residuárias , Fertilizantes , Ácido Algínico , Amônia , Purificação da Água/métodos , Nucleotídeos , Compostos Orgânicos , Dióxido de Silício , Membranas Artificiais
16.
Bioresour Technol ; 395: 130348, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242241

RESUMO

Pyrite-based constructed wetlands (CWs) stimulated nitrate removal performance at low carbon to nitrogen (C/N) ratio has been gaining widely attention. However, the combined effects of pyrite and C/N on the nitrate removal mechanisms and greenhouse gases (GHGs) reduction were ignored. This study found that pyrite-based CWs significantly enhanced nitrate removal in C/N of 0, 1.5 and 3 by effectively driving autotrophic denitrification with high abundance of autotrophs denitrifiers (Rhodanobacter) and nitrate reductase (EC 1.7.7.2), while the enhancement was weakened in C/N of 6 by combined effect of mixotrophic denitrification and dissimilatory nitrate reduction to ammonium (DNRA) with high abundance of organic carbon-degrading bacteria (Stenotrophobacter) and DNRA-related nitrite reductase genes (nrf). Moreover, pyrite addition significantly reduced GHGs emissions from CWs in all stages with the occurrence of iron-coupled autotrophic denitrification. The study shed light on the potential mechanism for pyrite-based CWs for treating low C/N ratio wastewater.


Assuntos
Compostos de Amônio , Sulfetos , Águas Residuárias , Áreas Alagadas , Desnitrificação , Nitratos , Nitrogênio , Carbono , Ferro
17.
Water Res ; 251: 121118, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219689

RESUMO

Fouling is a significant challenge for recycling and reusing saline wastewaters for industrial, agricultural or municipal applications. In this study, we propose a novel approach of magnetic field (MaF) and ultraviolet (UV) combined application for fouling mitigation. Results showed, combination of MaF and UV (MaF-UV) significantly decreased the content of biofouling and reduced the complexity of microbial networks, compared to UV and MaF alone treatments. This was due to MaF as pretreatment effectively reduced the water turbidity, improve the influent water quality of UV disinfection and increases UV transmittance, eliminating the adverse impacts of UV scattering and shielding, hence increased the inactivation effectiveness of UV disinfection process. MaF assisted UV also reduced the abundance of UV-resistant bacteria and inhibited the risk of bacterial photoreactivation and dark repair. Meanwhile, MaF-UV drastically reduced the contents of precipitates and particulate fouling by accelerating the transformation rate of CaCO3 crystal from compact calcite to loosen hydrated amorphous CaCO3, and enhancing the flocculation process. These findings demonstrated that MaF-UV is an effective anti-fouling strategy, and provide insights for sustainable application of saline wastewaters.


Assuntos
Águas Residuárias , Purificação da Água , Raios Ultravioleta , Bactérias , Desinfecção/métodos , Agricultura , Purificação da Água/métodos
18.
Chemosphere ; 350: 141068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160955

RESUMO

Aerobic composting is eco-friendly and sustainable practice for kitchen waste (KW) disposal to restore soil fertility and reduce environmental risks. However, KW compact structure, perishable nature, acidification by anaerobic acidogens, inhibits the metabolism of aerobic microbes, insufficient breakdown of organic matters, and prolong the composting duration. This study, co-composted coal fly ash (FA), to regulate bacterial dynamics, co-occurrence patterns and nutrients transformation in KW composting. Our results indicated, FA created suitable environment by increasing pH and temperature, which facilitated the proliferation and reshaping of microbial community. FA fostered the relative abundances of phlya (Proteobacteria, Chloroflexi and Actinobacteriota) and genera (Bacillus, Paenibacillus and Lysinibacillus), which promoted the nutrients transformation (phosphorus and nitrogen) in KW compost. FA enhanced the mutualistic correlations between bacterial communities, promoted the network complexity (nodes & edges) and contains more positive connections, which reflect the FA amendment effects. KW mature compost seed germination index reached >85% of FA treatment, indicated the final products fully met the Chinese national standard for organic fertilizer. These findings might provide opportunity to advance the KW composting and collaborative management of multiple waste to curb the current environmental challenges.


Assuntos
Compostagem , Microbiota , Cinza de Carvão , Carvão Mineral , Bactérias , Solo
19.
Water Res ; 246: 120750, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866244

RESUMO

Plant development greatly influences the composition structure and functions of microbial community in constructed wetlands (CWs) via plant root activities. However, our knowledge of the effect of plant development on microbial nitrogen (N) cycle is poorly understood. Here, we investigated the N removal performance and microbial structure in subsurface flow CWs at three time points corresponding to distinct stages of plant development: seedling, mature and wilting. Overall, the water parameters were profoundly affected by plant development with the increased root activities including radial oxygen loss (ROL) and root exudates (REs). The removal efficiency of NH4+-N was significantly highest at the mature stage (p < 0.01), while the removal performance of NO3--N at the seedling stage. The highest relative abundances of nitrification- and anammox-related microbes (Nitrospira, Nitrosomonas, and Candidatus Brocadia, etc.) and functional genes (Amo, Hdh, and Hzs) were observed in CWs at the mature stage, which can be attributed to the enhanced intensity of ROL, creating micro-habitat with high DO concentration. On the other hand, the highest relative abundances of denitrification- and DNRA-related microbes (Petrimonas, Geobacter, and Pseudomonas, etc.) and functional genes (Nxr, Nir, and Nar, etc.) were observed in CWs at the seedling and wilting stages, which can be explained by the absence of ROL and biological denitrification inhibitor derived from REs. Results give insights into microbial N cycle in CWs with different stages of plant development. More importantly, a potential solution for intensified N removal via the combination of practical operation and natural regulation is proposed.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Ciclo do Nitrogênio , Nitrogênio , Desenvolvimento Vegetal , Eliminação de Resíduos Líquidos/métodos
20.
Chemosphere ; 340: 139873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619753

RESUMO

Pelagic sharks are apex predators in oceanic ecosystems and tend to accumulate high amounts of mercury (Hg). The conventional method for assessing Hg exposure in sharks involves analyzing tissue samples without any chemical treatment. However, a substantial number of chemically treated tissue samples are still being preserved in laboratories or museums. It is critical to maximize the utilization of existing samples to reduce the need for additional sampling of pelagic sharks, especially endangered species. Lipid extraction is a widely employed pretreatment process for carbon isotope analysis in shark trophic ecology, while its impact on Hg quantification remains uncertain. Here, we evaluated the feasibility of using lipid-free muscle and liver tissues for investigation of Hg exposure in four endangered pelagic sharks inhabiting the eastern Pacific, including bigeye thresher (Alopias superciliosus), pelagic thresher (A. pelagicus), blue shark (Prionace glauca) and silky shark (Carcharhinus falciformis). Results showed that total Hg concentrations (THg) differed between untreated (THgbulk) and lipid-free (THglipid-free) samples for each tissue type of each species. In addition, dichloromethane-methanol extractions significantly altered the amount of Hg. This may result from the removal of lipoprotein compounds that vary between tissues and species. The THgbulk can be calculated by THglipid-free using the following formulas, THgbulk = 1.14 × THglipid-free + 0.30 and THgbulk = 0.33 × THglipid-free + 0.18, for muscle and liver tissues, respectively. These findings emphasize the applications of lipid-free tissues in THg analysis. This study may have important implications for improving evaluation of Hg exposure in endangered pelagic sharks.


Assuntos
Mercúrio , Tubarões , Animais , Ecossistema , Fígado , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...