Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998294

RESUMO

This study focuses on the efficient removal of Ni(II) from spent lithium-ion batteries (LIBs) to support environmental conservation and sustainable resource management. A composite material, known as molecular sieve (MS)-based metal-organic framework (MOF) composites (MMCs), consisting of a synthesized MS matrix with integrated MOFs, was developed for the adsorption of Ni(II). The structural and performance characteristics of the MMCs were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms (BET). Batch adsorption experiments were conducted to assess the Ni(II) adsorption performance of the MMCs. The results revealed that, under conditions of pH 8 and a temperature of 298 K, the MMCs achieved near-equilibrium Ni(II) adsorption within 6 h, with a maximum theoretical adsorption capacity of 204.1 mg/g. Further analysis of the adsorption data confirmed that the adsorption process followed a pseudo-second-order kinetic model and Langmuir isotherm model, indicating a spontaneous, endothermic chemical adsorption mechanism. Importantly, the MMCs exhibited superior Ni(II) adsorption compared to the MS. This study provides valuable insights into the effective recovery and recycling of Ni(II) from spent LIBs, emphasizing its significance for environmental sustainability and resource circularity.

2.
BMC Plant Biol ; 21(1): 588, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895144

RESUMO

BACKGROUND: Frogeye leaf spot (FLS) is a destructive fungal disease that affects soybean production. The most economical and effective strategy to control FLS is the use of resistant cultivars. However, the use of a limited number of resistant loci in FLS management will be countered by the emergence of new high-virulence Cercospora sojina races. Therefore, we identified quantitative trait loci (QTL) that control resistance to FLS and identified novel resistant genes using a genome-wide association study (GWAS) on 234 Chinese soybean cultivars. RESULTS: A total of 30,890 single nucleotide polymorphism (SNP) markers were used to estimate linkage disequilibrium (LD) and population structure. The GWAS results showed four loci (p < 0.0001) distributed over chromosomes (Chr.) 5 and 20, that are significantly associated with FLS resistance. No previous studies have reported resistance loci in these regions. Subsequently, 45 genes in the two resistance-related haplotype blocks were annotated. Among them, Glyma20g31630 encoding pyruvate dehydrogenase (PDH), Glyma05g28980, which encodes mitogen-activated protein kinase 7 (MPK7), and Glyma20g31510, Glyma20g31520 encoding calcium-dependent protein kinase 4 (CDPK4) in the haplotype blocks deserves special attention. CONCLUSIONS: This study showed that GWAS can be employed as an effective strategy for identifying disease resistance traits in soybean and narrowing SNPs and candidate genes. The prediction of candidate genes in the haplotype blocks identified by disease resistance loci can provide a useful reference to study systemic disease resistance.


Assuntos
Cercospora/patogenicidade , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Modelos Lineares , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Glycine max/imunologia , Glycine max/microbiologia , Virulência
3.
Phys Chem Chem Phys ; 23(4): 3008-3018, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480932

RESUMO

Electric field tailored magnetic properties of the perovskite-type oxide heterostructures are important in spintronic devices with low energy consumption and small size. Here, the electric field modulated magnetic properties of underoxidized SrRuO3 (SRO)/SrTiO3 (STO) heterostructures are investigated using first-principles calculations. The spin polarization of underoxidized SRO/STO heterostructures turns from negative to positive as the electric field changes from -0.2 to 0.2 V nm-1. The underoxidized SRO/STO heterostructure with 7 SRO atomic layers turns from perpendicular magnetic anisotropy to in-plane magnetic anisotropy as the electric field turns from -0.2 to 0.2 V nm-1, which can be attributed to the in-plane dx2-y2 and out-of-plane dxz, dyz orbitals. The Dzyaloshinskii-Moriya interaction of underoxidized SRO/STO heterostructures can also be effectively tailored using an electric field. These results indicate that the use of electric field is an effective method to modulate magnetic properties of perovskite-type oxide heterostructures, which is beneficial for the development of the high-performance spintronic devices.

4.
BMC Microbiol ; 20(1): 166, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546122

RESUMO

BACKGROUND: Cercospora sojina is a fungal pathogen that causes frogeye leaf spot in soybean-producing regions, leading to severe yield losses worldwide. It exhibits variations in virulence due to race differentiation between strains. However, the candidate virulence-related genes are unknown because the infection process is slow, making it difficult to collect transcriptome samples. RESULTS: In this study, virulence-related differentially expressed genes (DEGs) were obtained from the highly virulent Race 15 strain and mildly virulent Race1 strain under nitrogen starvation stress, which mimics the physiology of the pathogen during infection. Weighted gene co-expression network analysis (WGCNA) was then used to find co-expressed gene modules and assess the relationship between gene networks and phenotypes. Upon comparison of the transcriptomic differences in virulence between the strains, a total of 378 and 124 DEGs were upregulated, while 294 and 220 were downregulated in Race 1 and Race 15, respectively. Annotation of these DEGs revealed that many were associated with virulence differences, including scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase, and ß-1,3-glucanase. In addition, two modules highly correlated with the highly virulent strain Race 15 and 36 virulence-related DEGs were found to contain mostly ß-1,4-glucanase, ß-1,4-xylanas, and cellobiose dehydrogenase. CONCLUSIONS: These important nitrogen starvation-responsive DEGs are frequently involved in the synthesis of melanin, polyphosphate storage in the vacuole, lignocellulose degradation, and cellulose degradation during fungal development and differentiation. Transcriptome analysis indicated unique gene expression patterns, providing further insight into pathogenesis.


Assuntos
Cercospora/patogenicidade , Perfilação da Expressão Gênica/métodos , Nitrogênio/metabolismo , Fatores de Virulência/genética , Cercospora/classificação , Cercospora/genética , Cercospora/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Fenótipo , Análise de Sequência de RNA , Glycine max/microbiologia , Especificidade da Espécie , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...