Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 36715-36726, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38978456

RESUMO

Eu3+-induced polystyrene-co-poly(acrylic acid) aggregates (EIPAs) were synthesized using a self-assembly approach, and their structures and photophysical characteristics were examined to achieve effective monochromatic red emission in polymer light-emitting diodes (PLEDs). By adjusting the monomer ratio in RAFT polymerization, the size of Eu3+-induced block copolymer nanoaggregates can be regulated, thereby modulating the luminescence intensity. High-performance bilayer polymer light-emitting devices were fabricated using poly(9,9-dioctylfluorene) (PFO) and 2-(tert-butylphenyl)-5-biphenylyl-1,3,4-oxadiazole (PBD) as the host matrix, with EIPAs as the guest dopant. The devices exhibited narrow red emission at 615 nm with a full width at half-maximum (fwhm) of 15 nm across doping concentrations of 1, 3, 5, and 10 wt %. At a doping concentration of 3 wt %, the device achieved a maximum brightness of 1864.48 cd/m2 at 193.82 mA/cm2 and an external quantum efficiency of 3.20% at a current density of 3.5 mA/cm2. These results indicate that incorporating polystyrene-co-poly(acrylic acid) with Eu3+ complexes enhances the excitation and emission intensity, as well as the structural stability of the emitting layer in PLEDs, thereby improving the device performance.

2.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731443

RESUMO

In this work, a novel functionalized graphene oxide nucleating agent (GITP) was successfully synthesized using a silane coupling agent (IPTES), and polymer block (ITP) to efficiently improve the crystallization and mechanical performance of PET. To comprehensively investigate the effect of functionalized GO on PET properties, PET/GITP nanocomposites were prepared by introducing GITP into the PET matrix using the melt blending method. The results indicate that PET/GITP exhibits better thermal stability and crystallization properties compared with pure PET, increasing the melting temperature from 244.1 °C to 257.1 °C as well as reducing its crystallization half-time from 595 s to 201 s. Moreover, the crystallization temperature of PET/GITP nanocomposites was increased from 185.1 °C to 207.5 °C and the tensile strength was increased from 50.69 MPa to 66.8 MPa. This study provides an effective strategy for functionalized GO as a nucleating agent with which to improve the crystalline and mechanical properties of PET polyester.

3.
Brain Res Bull ; 177: 22-30, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517069

RESUMO

OBJECTIVE: Berberine (BBR) is an anti-inflammatory alkaloid compound extracted from herbs. The purpose of this study is to probe the possible effect and the mechanism of BBR against cerebral ischemia/reperfusion (I/R) injury. METHODS: In vitro oxygen and glucose deprivation (OGD) model was established on neurons from rat hippocampus, which was then subjected to BBR, IVA337 (PPAR-γ agonist), or GW9662 (PPAR-γ antagonist) treatment, to identify their effects on neuronal pyroptosis. MTT assay was utilized to determine cell survival rates, TUNEL staining for observation of ß-tubulin and MAP2 expressions, qRT-PCR for detection of mRNA expression of PPAR-γ, Western blot for assessment of protein expressions of PPAR-γ and pyroptosis-related proteins (AIM2, NLPR3, ASC, cleaved-Caspase-1, GSDMD, and GSDMD-N), and ELISA for examination of IL-18 and IL-1ß expressions. RESULTS: OGD modeling induced neuron pyroptosis, as evidenced by increased expression levels of pyroptosis-related proteins as well as IL-1ß and IL-18, and elevated cell apoptosis rate. In addition, OGD exposure led to PPAR-γ up-regulation and NF-κB activation. Overexpression of PPAR-γ ameliorated cell pyroptosis, while knockdown of PPAR-γ intensified neuron pyroptosis that could be reversed by BBR. Furthermore, either BBR could block the activation of NF-κB signaling pathway through PPAR-γ. CONCLUSION: BBR protects rats from cerebral I/R injury by up-regulating PPAR-γ to restrain NF-κB-mediated pyroptosis.


Assuntos
Berberina , Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Berberina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Proteínas de Ligação a DNA , NF-kappa B/metabolismo , PPAR gama , Piroptose/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...