Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Heliyon ; 10(9): e30272, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707474

RESUMO

The causal association of educational attainment (EA) with intervertebral disc degeneration (IVDD) or low back pain (LBP), and the mediating effect of metabolic syndrome (MetS) in this association, is not studied to date. In this study, using summary statistics of genome-wide association studies primarily conducted in the individuals of European ancestry, Mendelian randomization (MR) analyses were performed to investigate: (1) the total and direct effects of EA on IVDD and LBP, (2) bidirectional associations of EA with MetS or the components of MetS, (3) causal effects of MetS or its components on IVDD and LBP, and (4) mediating effects of MetS or its components on the causal associations of EA with IVDD and LBP. Univariable MR analysis demonstrated that genetically proxied EA was inversely associated with IVDD (ORIVW: 0.90; 95 % CI: 0.87-0.92) and LBP (ORIVW: 0.86; 95 % CI: 0.84-0.89). Consistent results were obtained after adjusting for potential confounders (cognition, economic level, smoking traits, and metabolic factors). Mediation analysis proved that the effect of EA on IVDD mediated by MetS, waist circumference, and high-density lipoprotein cholesterol was 11.38 %, 9.22 %, and 2.17 %, respectively. Besides, MetS mediated 8.42 % and waist circumference mediated 5.81 % of the EA effects on LBP, respectively. Our findings provided support for MetS mediating the causal protective effects of EA on IVDD and LBP, which provided causal evidence to the etiology and intervention targets of IVDD and LBP.

2.
Int J Nanomedicine ; 19: 1597-1627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406601

RESUMO

The development of numerous diseases is significantly influenced by inflammation. Macrophage-derived exosomes (M-Exos) play a role in controlling inflammatory reactions in various conditions, including chronic inflammatory pain, hypertension, and diabetes. However, the specific targets and roles of M-Exos in regulating inflammation in diseases remain largely unknown. This review summarizes current knowledge on M-Exos biogenesis and provides updated information on M-Exos' biological function in inflammation modulation. Furthermore, this review highlights the functionalization and engineering strategies of M-Exos, while providing an overview of cutting-edge approaches to engineering M-Exos and advancements in their application as therapeutics for inflammation modulation. Finally, multiple engineering strategies and mechanisms are presented in this review along with their perspectives and challenges, and the potential contribution that M-Exos may have in diseases through the modulation of inflammation is discussed.


Assuntos
Exossomos , MicroRNAs , Humanos , Macrófagos , Inflamação/terapia
3.
BMC Musculoskelet Disord ; 25(1): 104, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297262

RESUMO

BACKGROUND: The shortcomings of plaster in water resistance, air permeability, skin comfort, fixed stability and weight of wearing are still to be solved. 3D printed cast can overcome the above shortcomings. At present, there is a relative lack of data on the clinical application of 3D printed cast, probably due to its complexity, relatively long operating time, and high price. We aimed to compare and evaluate the short-term effectiveness, safety and advantages of 3D printed wrist cast versus polymer orthosis in the treatment of Colles fracture. METHODS: Forty patients with Colles fracture in our hospital from June to December 2022 were selected and divided into an observation group (20 patients, treated with instant 3D printed cast) and a control group (20 cases, treated with polymer orthosis). Both groups treated with manual reduction and external fixation. The visual analogue scale (VAS), immobilization effectiveness and satisfaction scores, Disability of the Arm, Shoulder and Hand (DASH) score, complications and imaging data were collected and compared before immobilization and at 2, 6 and 12 weeks after the fracture. RESULTS: VAS at 2 weeks after the fracture was significantly lower in the observation group than in the control group ( P < 0.05). The immobilization effectiveness and satisfaction scores at 6 weeks after the fracture were significantly higher in the observation group than in the control group (all P < 0.05). The DASH scores at 2 and 6 weeks after the fracture were significantly lower in the observation group than in the control group (all P < 0.05). There wasn't rupture of the printed cast or orthosis in both groups. There were 2 cases of skin irritation in the control group, and no skin irritation occurred in the observation group. The palmar tilt angle and ulnar inclination angle at 2 weeks and 12 weeks after the fracture were significantly higher in the observation group than in the control group (all P < 0.05). CONCLUSIONS: Both instant 3D printed cast and polymer orthosis are effective in the treatment of Colles fracture. But instant 3D printed cast is better than polymer orthosis in areas of good clinical and imaging performance, and high patient satisfaction and comfort.


Assuntos
Fratura de Colles , Fraturas do Rádio , Humanos , Fratura de Colles/cirurgia , Aparelhos Ortopédicos , Braquetes , Fixação de Fratura/métodos , Impressão Tridimensional , Resultado do Tratamento , Fraturas do Rádio/cirurgia , Moldes Cirúrgicos
4.
BMC Pulm Med ; 23(1): 459, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990169

RESUMO

BACKGROUND: Several observational studies have reported an association between hand grip strength (HGS) and pulmonary function (PF). However, causality is unclear. To investigate whether HGS and PF are causally associated, we performed Mendelian randomization (MR) analyses. METHODS: We identified 110 independent single nucleotide polymorphisms (SNPs) for right-hand grip strength (RHGS) and 103 independent SNPs for left-hand grip strength (LHGS) at the genome-wide significant threshold (P < 5 × 10-8) from MRC-IEU Consortium and evaluated these related to PF. MR estimates were calculated using the inverse-variance weighted (IVW) method and multiple sensitivity analyses were further performed. RESULTS: Genetical liability to HGS was positively causally associated with forced vital capacity (FVC) and forced expiratory volume in one second (FEV1), but not with FEV1/FVC. In addition, there was positive causal association between RHGS and FVC (OR=1.519; 95% CI, 1.418-1.627; P=8.96E-33), and FEV1 (OR=1.486; 95% CI, 1.390-1.589; P=3.19E-31); and positive causal association between LHGS and FVC (OR=1.464; 95% CI, 1.385-1.548; P=2.83E-41) and FEV1 (OR=1.419; 95% CI, 1.340-1.502; P=3.19E-33). Nevertheless, no associations were observed between RHGS and FEV1/FVC (OR=0.998; 95% CI, 0.902-1.103; P=9.62E-01) and between LHGS and FEV1/FVC (OR=0.966; 95% CI, 0.861-1.083; P=5.52E-01). Similar results were shown in several sensitivity analyses. CONCLUSION: Our study provides support at the genetic level that HGS is positively causally associated with FVC and FEV1, but not with FEV1/FVC. Interventions for HGS in PF impairment deserve further exploration as potential indicators of PF assessment.


Assuntos
Força da Mão , Análise da Randomização Mendeliana , Humanos , Pulmão , Volume Expiratório Forçado , Capacidade Vital/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
5.
Cell Mol Biol (Noisy-le-grand) ; 69(6): 151-159, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37605576

RESUMO

Disruption of bone homeostasis is the pathological basis of bone diseases. Multiple cells work together to maintain homeostasis and bone health. As a natural flavonoid compound, Naringin (NG) can positively affect the maintenance of bone homeostasis by acting on different types of cells. In this review, we discuss the direct and indirect osteoprotective effects of NG as well as the underlying mechanisms, and we provide a critical perspective on its clinical translation.


Assuntos
Flavanonas , Flavanonas/farmacologia , Flavonoides , Homeostase
6.
Mol Biol Rep ; 50(6): 4769-4779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37029290

RESUMO

BACKGROUND: Runt-related transcription factor-2 (Runx2) has been considered an inducer to improve bone repair ability of mesenchymal stem cells (MSCs). METHODS AND RESULTS: Twenty-four rabbits were used to establish Osteonecrosis of the femoral head (ONFH) and randomly devided into four groups: Adenovirus Runx2 (Ad-Runx2) group, Runx2-siRNA group, MSCs group and Model group. At 1 week after model establishment, the Ad-Runx2 group was treated with 5 × 107 MSCs transfected through Ad-Runx2, the Runx2-siRNA group was treated with 5 × 107 MSCs transfected through Runx2-siRNA, the MSCs group was injected with 5 × 107 untreated MSCs, and the Model group was treated with saline. The injection was administered at 1 week and 3 weeks after model establishment. The expression of bone morphogenetic protein 2 (BMP-2), Runx2 and Osterix from the femoral head was detected at 3 and 6 weeks after MSCs being injected, and Masson Trichrome Staining, Gross Morphology, X-ray and CT images observation were used to evaluate the repair effect of ONFH. The data revealed that the expression of BMP-2, Runx2 and Osterix in the Runx2-siRNA group was reduced at 3 weeks compared with the MSCs group, and then the expression further reduced at 6 weeks, but was still higher than the Model group besides Osterix; The expression of these three genes in the Ad-Runx2 group was higher than in the MSCs group. Masson Trichrome Staining, Gross Morphology and X-ray and CT images observation revealed that necrotic femoral head of the MSCs group was more regular and smooth than the Runx2-siRNA group, which has a collapsed and irregular femoral head. In the Ad-Runx2 group, necrotic femoral head was basically completely repaired and covered by rich cartilage and bone tissue. CONCLUSIONS: Overexpression of Runx2 can improve osteoblastic phenotype maintenance of MSCs and promote necrotic bone repair of ONFH.


Assuntos
Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , Animais , Coelhos , Necrose da Cabeça do Fêmur/genética , Necrose da Cabeça do Fêmur/terapia , Necrose da Cabeça do Fêmur/metabolismo , Cabeça do Fêmur , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/farmacologia
7.
Cell Transplant ; 32: 9636897221144949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36591965

RESUMO

Aptamers are single-stranded nucleic acids (DNA, short RNA, or other artificial molecules) produced by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, which can be tightly and specifically combined with desired targets. As a comparable alternative to antibodies, aptamers have many advantages over traditional antibodies such as a strong chemical stability and rapid bulk production. In addition, aptamers can bind targets in various ways, and are not limited like the antigen-antibody combination. Studies have shown that aptamers have tremendous potential to diagnose and treat clinical diseases. However, only a few aptamer-based drugs have been used because of limitations of the aptamers and SELEX technology. To promote the development and applications of aptamers, we present a review of the methods optimizing the SELEX technology and modifying aptamers to boost the selection success rate and improve aptamer characteristics. In addition, we review the application of aptamers to treat bone diseases.


Assuntos
Aptâmeros de Nucleotídeos , Doenças Ósseas , Humanos , Aptâmeros de Nucleotídeos/uso terapêutico , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Técnica de Seleção de Aptâmeros/métodos , Ligantes , Doenças Ósseas/diagnóstico , Doenças Ósseas/terapia
8.
Int J Nanomedicine ; 17: 6275-6287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36536940

RESUMO

Partial-thickness cartilage defects (PTCDs) of the articular surface is the most common problem in cartilage degeneration, and also one of the main pathogenesis of osteoarthritis (OA). Due to the lack of a clear diagnosis, the symptoms are often more severe when full-thickness cartilage defect (FTCDs) is present. In contrast to FTCDs and osteochondral defects (OCDs), PTCDs does not injure the subchondral bone, there is no blood supply and bone marrow exudation, and the nearby microenvironment is unsuitable for stem cells adhesion, which completely loses the ability of self-repair. Some clinical studies have shown that partial-thickness cartilage defects is as harmful as full-thickness cartilage defects. Due to the poor effect of conservative treatment, the destructive surgical treatment is not suitable for the treatment of partial-thickness cartilage defects, and the current tissue engineering strategies are not effective, so it is urgent to develop novel strategies or treatment methods to repair PTCDs. In recent years, with the interdisciplinary development of bioscience, mechanics, material science and engineering, many discoveries have been made in the repair of PTCDs. This article reviews the current status and research progress in the treatment of PTCDs from the aspects of diagnosis and modeling of PTCDs, drug therapy, tissue transplantation repair technology and tissue engineering ("bottom-up").


Assuntos
Cartilagem Articular , Cartilagem Articular/patologia , Engenharia Tecidual/métodos , Medula Óssea , Células-Tronco , Células Cultivadas
10.
J Investig Med ; 69(1): 75-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051358

RESUMO

The study aimed to compare the clinical characteristics and outcomes of patients with different types (ordinary, severe, and critical) of COVID-19. A total of 1280 patients diagnosed with COVID-19 were retrospectively studied, including 793 ordinary patients, 363 severe patients and 124 critical patients. The impact of comorbidities on prognosis in ordinary, severe, and critical patients were compared and analyzed. The most common comorbidities were hypertension (33.0%), followed by diabetes (14.4%). The length of hospital stay and time from the onset to discharge were significantly longer in ordinary patients with comorbidities compared with those without comorbidities. Critical patients with comorbidities had significantly lower cure rate (19.3% vs 38.9%, p<0.05) and significantly higher mortality rate (53.4% vs 33.3%, p<0.05) compared with those without comorbidities. The time from onset to discharge was significantly longer in ordinary patients with hypertension compared with those without hypertension. The mortality rate of critical patients with diabetes was higher than that of patients without diabetes (71.4% vs 42.7%, p<0.05). Men had a significantly increased risk of death than women (OR=4.395, 95% CI 1.896 to 10.185, p<0.05); patients with diabetes had higher risk of death (OR=3.542, 95% CI 1.167 to 10.750, p<0.05). Comorbidities prolonged treatment time in ordinary patients, increased the mortality rate and reduced the cure rate of critical patients; hypertension and diabetes may be important factors affecting the clinical course and prognosis of ordinary and critical patients, respectively.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Adulto , Idoso , COVID-19/mortalidade , Comorbidade , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
11.
Curr Gene Ther ; 20(5): 395-404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33019929

RESUMO

BACKGROUND: Recruitment of gene modifying bone marrow mesenchymal stem cells (BMSCs) has been considered an alternative to single-cell injection in articular cartilage repair. PURPOSE: This study aimed to investigate whether the effect of runt-related transcription factor 2(Runx2) overexpression bone marrow mesenchymal stem cells in vivo could improve the quality of repaired tissue of a knee cartilage defect in a rabbit model. METHODS: Thirty-two New Zealand rabbits were randomly divided into four groups. The blank group (Con) did not receive anything, the model group (Mo) was administered saline, the simple stem cell group (MSCs) received MSCs injection, and the Runx2 transfection group (R-MSCs) received Runx2 overexpression MSCs injection. After adapting to the environment for a week, a 5 mm diameter cylindrical osteochondral defect was created in the center of the medial femoral condyle. Cell and saline injections were performed in the first and third weeks after surgery. The cartilage repair was evaluated by macroscopically and microscopically at 4 and 8 weeks. RESULTS: Macroscopically, defects were filled and surfaces were smoother in the MSCs groups than in the Mo group at 4th week. Microscopically, the R-MSCs group showed coloration similar to surrounding normal articular cartilage tissue at 8 weeks in masson trichrome staining. The COL-II, SOX9, and Aggrecan mRNA expressions of MSCs were enhanced at 4 weeks compared with R-MSCs, then the expression reduced at 8 weeks, but was still higher than Mo group level (P<0.05). The western blot examination revealed that the COL-IIand SOX9 expression of MSCs was higher than R-MSCs at 4 weeks, then the expression reduced at 8 weeks, but was still higher than the Mo level (P<0.05). The IL-1ß content in the joint fluid also revealed that cartilage repair with R-MSCs was better than that with MSCs at 8 weeks (P<0.05). CONCLUSION: The R-MSCs group showed cellular morphology and arrangement similar to surrounding normal articular cartilage tissue, and Runx2 overexpression of MSCs resulted in overall superior cartilage repair as compared with MSCs at 8 weeks.


Assuntos
Doenças das Cartilagens/terapia , Cartilagem Articular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Doenças das Cartilagens/genética , Cartilagem Articular/crescimento & desenvolvimento , Fêmur/lesões , Fêmur/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Interleucina-1beta/genética , Joelho/crescimento & desenvolvimento , Joelho/patologia , Coelhos , Engenharia Tecidual
12.
Clin Sci (Lond) ; 133(18): 1955-1975, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31387936

RESUMO

Mesenchymal stem cells (MSCs) with multipotential differentiation capacity can differentiate into bone cells under specific conditions and can be used to treat osteonecrosis (ON) of the femoral head (ONFH) through cell transplantation. The current study aims to explore the role of bone marrow (BM) MSCs (BMSCs)-derived exosomes carrying microRNA-122-5p (miR-122-5p) in ONFH rabbit models.First, rabbit models with ONFH were established. ONFH-related miRNAs were screened using the Gene Expression Omnibus (GEO) database. A gain-of-function study was performed to investigate the effect of miR-122-5p on osteoblasts and BMSCs and effects of exosomes carrying miR-122-5p on ONFH. Co-culture experiments for osteoblasts and BMSCs were performed to examine the role of exosomal miR-122-5p in osteoblast proliferation and osteogenesis. The target relationship between miR-122-5p and Sprouty2 (SPRY2) was tested.MiR-122, significantly decreased in ONFH in the GSE89587 expression profile, was screened. MiR-122-5p negatively regulated SPRY2 and elevated the activity of receptor tyrosine kinase (RTK), thereby promoting the proliferation and differentiation of osteoblasts. In vivo experiments indicated that bone mineral density (BMD), trabecular bone volume (TBV), and mean trabecular plate thickness (MTPT) of femoral head were increased after over-expressing miR-122-5p in exosomes. Significant healing of necrotic femoral head was also observed.Exosomes carrying over-expressed miR-122-5p attenuated ONFH development by down-regulating SPRY2 via the RTK/Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Findings in the present study may provide miR-122-5p as a novel biomarker for ONFH treatment.


Assuntos
Exossomos/metabolismo , Necrose da Cabeça do Fêmur/patologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Compostos de Anilina/farmacologia , Animais , Sequência de Bases , Compostos de Benzilideno/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Coelhos , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética
13.
Stem Cells Int ; 2019: 5747298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089330

RESUMO

Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.

14.
Prion ; 13(1): 106-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050590

RESUMO

OBJECTIVE: To evaluate whether EPC-MVs could promote bone regeneration by directly regulating osteoblast through miR-126. The underlying mechanisms were also explored. METHODS: EPCs were isolated from bone marrow mononuclear cells. EPC-MVs were collected from EPCs cultured medium. The lentivirus was used to induce miR-126 over-expression in EPCs and EPC-MVs. miR-126 expression was detected by qRT-PCR. The proliferation, migration, apoptosis and differentiation abilities of osteoblast cells MC3T3-E1 were analysed in the presence or absence of EPC-MVs or miR-126 overexpressed EPC-MVs (EPC-MVs-miR126). The proteins of Erk1/2 and Bcl-2 were analysed by western blot. Erk1/2 inhibitor was used for pathway exploration. RESULTS: EPC-MVs reduced apoptosis and promoted proliferation and migration of MC3T3-E1 cells, which could be enhanced by miR-126 enrichment (p< 0.05). Neither EPC-MVs nor EPC-MVs-miR126 had an effect on MC3T3-E1 cell osteogenic differentiation (p> 0.05). EPC-MVs-miR126 had better effects than EPC-MVs on upregulating the expressions of p-Erk1/2 and Bcl-2, which were abolished by Erk1/2 inhibitor. ERK1/2-Bcl-2 activity plays a crucial role in the regulation of EPC-MVs/EPC-MVs-miR126 on the effect of MC3T3-E1 cells. CONCLUSION: EPC-MVs promote proliferation and migration of MC3T3-E1 cell while reduced apoptosis via the miR-126/Erk1/2-Bcl-2 pathway. A combination of EPC-MVs and miR-126 might provide novel therapeutic targets for bone regeneration and fracture healing through regulating osteoblast.


Assuntos
Micropartículas Derivadas de Células/genética , Células Progenitoras Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Osteoblastos/citologia , Animais , Apoptose , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Regulação para Cima
15.
FASEB J ; 33(7): 8055-8068, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964699

RESUMO

Traumatic osteonecrosis of the femoral head (ONFH) is a condition leading to the collapse of the femoral head, and the primary treatment is a total hip replacement, which has a poor prognosis. The current study was conducted with the aim of investigating the role of exosomes from bone marrow-derived mesenchymal stem cells (BM-MSCs) carrying microRNA-224-3p (miR-224-3p) in traumatic ONFH. Initially, a microarray analysis was performed to screen the differentially expressed genes and miRs associated with traumatic ONFH. Patients with traumatic and nontraumatic ONFH were enrolled, and HUVECs were obtained. The BM-MSCs-derived exosomes were purified and characterized, after which HUVECs were cocultured with exosomes. The functional role of miR-224-3p in traumatic ONFH was determined using ectopic expression, depletion, and reporter assay experiments. Endothelial cell proliferation, migration, invasion abilities, and angiogenesis were evaluated. Based on microarray analysis, miR-224-3p was found to be down-regulated, whereas focal adhesion kinase family interacting protein of 200 kDa (FIP200) was up-regulated in ONFH. Traumatic ONFH exosomes resulted in the up-regulation of FIP200 and down-regulation of miR-224-3p. FIP200 was confirmed to be a target gene of miR-224-3p. Exosomes were internalized by vascular endothelial cells. The down-regulation of exosomal miR-224-3p was observed to promote endothelial cell proliferation, migration, invasion abilities, angiogenesis, and FIP200 expression. In addition, FIP200 overexpression promoted angiogenesis. In summary, the results highly indicated that lower miR-224-3p levels in exosomes derived from BM-MSCs promote angiogenesis of traumatic ONFH by up-regulating FIP200. The present study provides a potential strategy for the treatment of traumatic ONFH.-Xu, H.-J., Liao, W., Liu, X.-Z., Hu, J., Zou, W.-Z., Ning, Y., Yang, Y., Li, Z.-H. Down-regulation of exosomal microRNA-224-3p derived from bone marrow-derived mesenchymal stem cells potentiates angiogenesis in traumatic osteonecrosis of the femoral head.


Assuntos
Células da Medula Óssea/metabolismo , Regulação para Baixo , Cabeça do Fêmur/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/biossíntese , Neovascularização Fisiológica , Osteonecrose/metabolismo , Artroplastia de Quadril , Proteínas Relacionadas à Autofagia/biossíntese , Células da Medula Óssea/patologia , Técnicas de Cocultura , Feminino , Cabeça do Fêmur/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Osteonecrose/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-30327678

RESUMO

The current treatment strategies for osteoporosis (OP) involve promoting osteogenic differentiation and inhibiting adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). According to a theory of traditional Chinese medicine (TCM), the kidneys contain an "essence" that regulate bone metabolism and generate marrow. Kidney disorders are therefore considered to be a major cause of OP as per the principles of TCM, which recommends kidney-tonifying treatments for OP. The Zuogui pill (ZGP) is a classic kidney-tonifying medication that effectively improves OP symptoms. Studies have shown that ZGP can promote the osteogenic differentiation of BMSCs, providing scientific evidence for the TCM theory linking kidneys with bone metabolism. In this review, we have provided an overview of recent studies that examined the underlying mechanisms of ZGP mediated regulation of BMSC osteogenic and adipogenic differentiation.

17.
Stem Cells Int ; 2018: 7231739, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760734

RESUMO

The extracellular microvesicles (MVs) are attracting much attention because they are found to be the key paracrine mediator participating in tissue regeneration. Dexamethasone (DXM) is widely accepted as an important regulator in tailoring the differentiation potential of mesenchymal stem cells (MSCs). However, the effect of DXM on the paracrine signaling of MSCs remains unknown. To this point, we aimed to explore the role of DXM in regulating the paracrine activity of MSCs through evaluating the release and function of MSC-MVs, based on their physicochemical characteristics and support on osteogenic response. Results showed that DXM had no evident impact on the release of MSC-MVs but played a pivotal role in regulating the function of MSC-MVs. MVs obtained from the DXM-stimulated MSCs (DXM-MVs) increased MC3T3 cell proliferation and migration and upregulated Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteopontin (OPN) expression. The repair efficiency of DXM-MVs for femur defects was further investigated in an established rat model. It was found that DXM-MVs accelerated the healing process of bone formation in the defect area. Thus, we conclude that using DXM as stimuli to obtain functional MSCs-MVs could become a valuable tool for promoting bone regeneration.

18.
Am J Transl Res ; 9(4): 1680-1693, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469774

RESUMO

This study investigated the effects of altered CXCL12/CXCR4 axis on the bone morphogenetic protein 2 (BMP-2)/Smad/runt-related transcription factor 2 (Runx2)/Osterix (Osx) signal axis and osteogenic gene expression during osteogenic differentiation of mesenchymal stem cells (MSCs), to gain understanding of the link between migration and osteogenic differentiation signal axis and MSCs osteogenic differentiation mechanisms. The pHBAd-MCMV- CXCL12-GFP vector (Ad-CXCL12) was constructed and quantitative polymerase chain reaction (qPCR)/western blotting used to determine CXCL12 expression in Ad-CXCL12-transfected MSCs. MSCs were treated with Ad-CXCL12 and AMD3100 (CXCL12 inhibitor) to detect BMP-2/Smad/Runx2/Osterix expression, bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN) mRNA expression, and alkaline phosphatase (ALP) activity. PCR and sequencing confirmed successful construction of Ad-CXCL12. qPCR and enzyme-linked immunosorbent assay indicated that Ad-CXCL12 transfection promoted CXCL12 expression in MSCs. At 72 hours, Runx2 and Osterix, and Smad1/5/8 mRNA and protein expressions were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01). At 1 and 2 weeks, ALP activity and BSP mRNA expression were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01), respectively. No significant difference in OCN and OPN mRNA expression was determined between Ad-CXCL12 and control groups (P > 0.05). At 3 weeks, no significant difference in mineralized nodule staining was observed between groups (P > 0.05). Changes in the CXCL12/CXCR4 migration axis affected the BMP-2/Smad/Runx2/Osterix axis and BSP, OCN and OPN mRNA expression in early-stage, but not mid-/latestage, MSCs osteogenic differentiation, therefore affecting the ability of MSCs to undergo osteogenic differentiation.

19.
Acta Pharmacol Sin ; 38(7): 990-997, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28260802

RESUMO

Overload-exercise (OE) causes myocardial injury through inducing autophagy and apoptosis. In this study we examined whether an autophagy inhibitor 3-methyladenine (3-MA) could alleviate OE-induced cardiac injury. Rats were injected with 3-MA (15 mg/kg, iv) or saline before subjected to various intensities of OE, including no swim (control), 2 h swim (mild-intensity exercise, MIE), 2 h swim with 2.5% body weight overload (moderate OE; MOE), 5% overload (intensive OE; IOE) or 2.5% overload until exhausted (exhaustive OE; EOE). After OE, the hearts were harvested for morphological and biochemiacal analysis. The cardiac morphology, autophagosomes and apoptosis were examined with H&E staining, transmission electron microscopy and TUNEL analysis, respectively. Autophagy-related proteins to (LC3-II/I and Beclin-1) and apoptosis-related proteins (Bcl-2/Bax) were assessed using Western blotting. Our results showed that compared with the control, MIE did not change the morphological structures of the heart tissues that exhibited intact myocardial fibers and neatly arranged cardiomyocytes. However, IOE resulted in irregular arrangement of cardiomyocytes and significantly increased width of cardiomyocytes, whereas EOE caused more swollen and even disrupted cardiomyocytes. In parallel with the increased OE intensity (MOE, IOE, EOE), cardiomyocyte autophagy and apoptosis became more and more prominent, evidenced by the increasing number of autophagosomes and expression levels of LC3-II/I and Beclin-1 as well as the increasing apoptotic cells and decreasing Bcl-2/Bax ratio. 3-MA administration significantly attenuated OE-induced morphological changes of cardiomyocytes as well as all the autophagy- and apoptosis-related abnormalities in MOE, IOE and EOE rats. Thus, the autophagy inhibitor 3-MA could alleviate OE-induced heart injury in rats.


Assuntos
Adenina/análogos & derivados , Autofagia/efeitos dos fármacos , Traumatismos Cardíacos/tratamento farmacológico , Condicionamento Físico Animal , Adenina/farmacologia , Animais , Modelos Animais de Doenças , Traumatismos Cardíacos/patologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
Res Sports Med ; 24(3): 157-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27248716

RESUMO

A 12-week Wheelchair Tai Chi 10 Form (WTC10) intervention was conducted among elderly with disability to examine the effect of this WTC10 intervention on selected physical and mental health variables. Thirteen (age 87.23 ± 6.71) in the WTC10 intervention group and 15 (age 89.73 ± 6.31) in the control group completed the study. Independent t-tests and paired t-tests were employed to examine the differences between groups and within groups, respectively, at pretest and post-test. The WTC10 intervention group showed significant improvements in systolic and diastolic blood pressure, shoulder external rotation, left trunk rotation and total trunk rotation after the intervention. A 12-week WTC10 intervention had positive effects on blood pressure, range of motion at the shoulder and trunk, physical activity, and mental health among the elderly with disability. WTC10 is a feasible and safe exercise for the elderly with disability.


Assuntos
Pessoas com Deficiência/psicologia , Exercício Físico/fisiologia , Saúde Mental , Tai Chi Chuan , Cadeiras de Rodas , Idoso de 80 Anos ou mais , Pressão Sanguínea , Feminino , Nível de Saúde , Humanos , Masculino , Amplitude de Movimento Articular , Rotação , Articulação do Ombro/fisiologia , Tai Chi Chuan/psicologia , Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...