Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(8): 2054-2057, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058640

RESUMO

The dynamic control of magnetization by short laser pulses has recently attracted interest. The transient magnetization at the metallic magnetic interface has been investigated through second-harmonic generation and the time-resolved magneto-optical effect. However, the ultrafast light-driven magneto-optical nonlinearity in ferromagnetic heterostructures for terahertz (THz) radiation remains unclear. Here, we present THz generation from a metallic heterostructure, Pt/CoFeB/Ta, which is ascribed to an ∼6-8% contribution from the magnetization-induced optical rectification and an ∼94-92% contribution from both spin-to-charge current conversion and ultrafast demagnetization. Our results show that THz-emission spectroscopy is a powerful tool to study the picosecond-time-scale nonlinear magneto-optical effect in ferromagnetic heterostructures.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500890

RESUMO

Due to its high sensitivity and because it does not rely on the magneto-optical response, terahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy metal (HM) heterostructures. Here, by changing the order of the conductive HM coating on the FM nanometer film, the dominant electric dipole contribution to the laser-induced THz radiation can be unraveled from the ultrafast magnetic dipole. Furthermore, to take charge equilibration into account, we separate the femtosecond laser-induced spin-to-charge converted current and the instantaneous discharging current within the illuminated area. The THz emission spectroscopy gives us direct information into the coupled spin and charge dynamics during the first moments of the light-matter interaction. Our results also open up new perspectives to manipulate and optimize the ultrafast charge current for promising high-performance and broadband THz radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...