Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 402: 130844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754560

RESUMO

In this study, a novel magnetic Ni-Fe2O3-C catalyst combined with electromagnetic induction heating in biomass steam gasification was proposed to enhance H2 production. Better catalytic performance for H2 production was observed with the Ni-Fe2O3-C catalyst under induction heating, resulting in an increase in H2 yield from 735.1 to 2271.2 mL/g-biomass (a 209.1 % enhancement). SEM, TGA and XRD analysis demonstrated a significant decrease in coking deposition, caking, and particle agglomeration of the Ni-Fe2O3-C catalyst under induction heating, while maintaining more active sites. Importantly, the benefits of induction heating were also applicable to different magnetic catalysts like Ni-Al2O3-C, Ni-ZrO2-C, and Ni-MgO-C. Experimental results revealed a logarithmic correlation between the increase in H2 yields due to induction heating and the magnetic saturation (Ms) of the catalysts. The Ni-Fe2O3-C catalyst, with a high Ms of 50.9 emu/g, showed the highest catalytic activity for H2 production under induction heating in this study.


Assuntos
Biomassa , Compostos Férricos , Hidrogênio , Níquel , Vapor , Catálise , Hidrogênio/química , Níquel/química , Compostos Férricos/química , Temperatura Alta , Calefação , Difração de Raios X , Fenômenos Eletromagnéticos
2.
Foods ; 11(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36141029

RESUMO

Installing a separation device for undesirable volatile substances represented by dimethyl sulfide (DMS) in wort boiling systems is a common way to reduce the thermal stress and maintain the beer's flavor stability (characterized by the thiobarbituric acid (TBA) value), but most of these separation devices need to provide additional vacuum or primary thermal energy. This research shows that it can produce self-evaporation that consumes its own sensible heat when wort is in the state of turbulent film. Therefore, a new gas-liquid separation system named the multilayer centrifugal film-forming device (similar to the spinning cone column (SCC)) is proposed, which can strengthen self-evaporation through wort turbulent film and create gas phase conditions for the separation of undesirable volatile substances. The results show that up to 91.6% of the content of DMS in wort could be significantly removed by centrifugal film self-evaporation. The TBA value of wort was reduced by more than 15%, and the wort was not found to be oxidized. Compared with the traditional boiling method, the multi-layer centrifugal film-forming device can significantly save primary energy consumption and reduce energy consumption by 216.4 kJ per liter of wort during the boiling and cooling process.

3.
J Am Chem Soc ; 143(48): 20090-20094, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34826220

RESUMO

How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use in situ synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation. For the most active catalyst, ethylene reagent molecules bind close to the catalytic clusters, but only at temperatures approaching experimentally observed onset of catalysis. The ethane product molecules favor a different binding location suggesting that the product is readily released from the active site. An unusual guest-dependence of the framework negative thermal expansion is documented. We hypothesize that reagent and product binding sites reflect the pathway through the MOF to the active site and can be used to identify key factors that impact the catalytic activity.

4.
J Chem Phys ; 152(8): 084703, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113354

RESUMO

The metal-organic framework (MOF), NU-1000, and its metalated counterparts have found proof-of-concept application in heterogeneous catalysis and hydrogen storage among others. A vapor-phase technique, akin to atomic layer deposition (ALD), is used to selectively deposit divalent Cu ions on oxo, hydroxo-bridged hexa-zirconium(IV) nodes capped with terminal -OH and -OH2 ligands. The subsequent reaction with steam yields node-anchored, CuII-oxo, hydroxo clusters. We find that cluster installation via AIM (ALD in MOFs) is accompanied by an expansion of the MOF mesopore (channel) diameter. We investigated the behavior of the cluster-modified material, termed Cu-AIM-NU-1000, to heat treatment up to 325 °C at atmospheric pressure with a low flow of H2 into the reaction cell. The response under these conditions revealed two important results: (1) Above 200 °C, the initially installed few-metal-ion clusters reduce to neutral Cu atoms. The neutral atoms migrate from the nodes and aggregate into Cu nanoparticles. While the size of particles formed in the MOF interior is constrained by the width of mesopores (∼3 nm), the size of those formed on the exterior surface of the MOF can grow as large as ∼8 nm. (2) Reduction and release of Cu atoms from the MOFs nodes is accompanied by the dynamic structural transformation of NU-1000 as it reverts back to its original dimension following the release. These results show that while the MOF framework itself remains intact at 325 °C in an H2 atmosphere, the small, AIM-installed CuII-oxo, hydroxo clusters are stable with respect to reduction and conversion to metallic nanoparticles only up to ∼200 °C.

5.
J Am Chem Soc ; 141(20): 8306-8314, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31083934

RESUMO

The understanding of the catalyst-support interactions has been an important challenge in heterogeneous catalysis since the supports can play a vital role in controlling the properties of the active species and hence their catalytic performance. Herein, a series of isostructural mesoporous metal-organic frameworks (MOFs) based on transition metals, lanthanides, and actinides (Zr, Hf, Ce, Th) were investigated as supports for a vanadium catalyst. The vanadium species was coordinated to the oxo groups of the MOF node in a single-ion fashion, as determined by single-crystal X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, and diffuse reflectance UV-vis spectroscopy. The support effects of these isostructural MOFs were then probed using the aerobic oxidation of 4-methoxybenzyl alcohol as a model reaction. The turnover frequency was found to be correlated with the electronegativity and oxidation state of the metal cations on the supporting MOF nodes, highlighting an important consideration when designing catalyst supports.

6.
J Am Chem Soc ; 141(23): 9292-9304, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117650

RESUMO

Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.

7.
Chem Sci ; 10(4): 1186-1192, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774917

RESUMO

Tetratopic organic linkers have been extensively used in Zr-based metal-organic frameworks (MOFs) where diverse topologies have been observed. Achieving meticulous control over the topologies to tune the pore sizes and shapes of the resulting materials, however, remains a great challenge. Herein, by introducing substituents to the backbone of tetratopic linkers to affect the linker conformation, phase-pure Zr-MOFs with different topologies and porosity were successfully obtained under the same synthetic conditions. The conversion of CO2 to valuable cyclic carbonates is a promising route for the mitigation of the greenhouse gas. Owing to the presence of substrate accessible Lewis acidic Zr(iv) sites in the 8-connected Zr6 nodes, the Zr-MOFs in this study have been investigated as heterogenous acid catalysts for CO2 cycloaddition to styrene oxide. The MOFs exhibited drastically different catalytic activities depending on their distinct pore structures. Compared to previously reported MOF materials, a superior catalytic activity was observed with the mesoporous NU-1008, giving an almost 100% conversion under mild conditions.

8.
J Am Chem Soc ; 140(36): 11174-11178, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30141922

RESUMO

To modify its steric and electronic properties as a support for heterogeneous catalysts, electron-withdrawing and electron-donating ligands, hexafluoroacetylacetonate (Facac-) and acetylacetonate (Acac-), were introduced to the metal-organic framework (MOF), NU-1000, via a process akin to atomic layer deposition (ALD). In the absence of Facac- or Acac-, NU-1000-supported, AIM-installed Ni(II) sites yield a mixture of C4, C6, C8, and polymeric products in ethylene oligomerization. (AIM = ALD-like deposition in MOFs). In contrast, both Ni-Facac-AIM-NU-1000 and Ni-Acac-AIM-NU-1000 exhibit quantitative catalytic selectivity for C4 species. Experimental findings are supported by density functional theory calculations, which show increases in the activation barrier for the C-C coupling step, due mainly to rearrangement of the siting of Facac- or Acac- to partially ligate added nickel. The results illustrate the important role of structure-tuning support modifiers in controlling the activity of MOF-sited heterogeneous catalysts and in engendering catalytic selectivity. The results also illustrate the ease with which crystallographically well-defined modifications of the catalyst support can be introduced when the node-coordinating molecular modifier is delivered via the vapor phase.

9.
J Am Chem Soc ; 140(36): 11179-11183, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113833

RESUMO

Zr-based metal-organic frameworks (MOFs) have been known for their excellent stability; however, due to the high connectivity of the Zr6 nodes, it is challenging to introduce flexibility into Zr-MOFs. Here we present a flexible Zr-MOF named NU-1400 comprising 4-connected Zr6 nodes and tetratopic linkers. It exhibits guest-dependent structural flexibility with up to 48% contraction in the unit cell volume as evidenced by single-crystal X-ray diffraction studies. The expanded or contracted conformations of NU-1400 showed drastically different reactivity toward the hydrolysis of a nerve agent simulant owing to the size-selective effect toward the reactant.

10.
J Am Chem Soc ; 140(28): 8652-8656, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29950097

RESUMO

We report the syntheses, structures, and oxidation catalytic activities of a single-atom-based vanadium oxide incorporated in two highly crystalline MOFs, Hf-MOF-808 and Zr-NU-1000. These vanadium catalysts were introduced by a postsynthetic metalation, and the resulting materials (Hf-MOF-808-V and Zr-NU-1000-V) were thoroughly characterized through a combination of analytic and spectroscopic techniques including single-crystal X-ray crystallography. Their catalytic properties were investigated using the oxidation of 4-methoxybenzyl alcohol under an oxygen atmosphere as a model reaction. Crystallographic and variable-temperature spectroscopic studies revealed that the incorporated vanadium in Hf-MOF-808-V changes position with heat, which led to improved catalytic activity.

11.
Nat Commun ; 9(1): 1754, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717123

RESUMO

Organocatalytic polymerization reactions have a number of advantages over their metal-catalyzed counterparts, including environmental friendliness, ease of catalyst synthesis and storage, and alternative reaction pathways. Here we introduce an organocatalytic polymerization method called benzylic chloromethyl-coupling polymerization (BCCP). BCCP is catalyzed by organocatalysts not previously employed in polymerization processes (sulfenate anions), which are generated from bench-stable sulfoxide precatalysts. The sulfenate anion promotes an umpolung polycondensation via step-growth propagation cycles involving sulfoxide intermediates. BCCP represents an example of an organocatalyst that links monomers by C=C double bond formation and offers transition metal-free access to a wide variety of polymers that cannot be synthesized by traditional precursor routes.

12.
ACS Appl Mater Interfaces ; 10(17): 15073-15078, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29671320

RESUMO

Direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal-organic framework (MOF) can be rationally designed using postsynthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition toward hitherto ill-favored grafting sites orientated toward NU-1000s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidative dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h-1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.

13.
Inorg Chem ; 57(5): 2782-2790, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29461822

RESUMO

Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-postmetalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

15.
Environ Sci Pollut Res Int ; 25(8): 7907-7915, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29299865

RESUMO

Two kinds of pinewood sawdust activated carbon adsorbents were prepared by fast activation with H3PO4 in a spouted bed, and the application in adsorption of copper ions was investigated. With only 3 min of activation time, the BET surface area of activated carbons reached 1537.5 m2/g for impregnation mass ratio of H3PO4 to sawdust at 1:1 and activation temperature of 500 °C (IR1-500), whereas it was 1750.7 m2/g for the impregnation ratio at 4:1 and activation temperature of 800 °C (IR4-800). The pseudo second-order reaction kinetics well describes the experimental adsorption of copper ion in this study, indicating chemisorption dominated in the process. By the C1s spectrum, activated carbons from IR1-500 contained more carboxyl groups (-COOH) and carbonyl groups (C=O), which played an important role in copper ions adsorption. In addition, it was found that the P-containing groups (metaphosphates) also involved in the adsorption of copper ion.


Assuntos
Carvão Vegetal/química , Cobre/química , Íons/química , Ácidos Fosfóricos/química , Pinus , Adsorção , Cobre/isolamento & purificação , Íons/isolamento & purificação , Cinética , Temperatura , Madeira/química
16.
ACS Appl Mater Interfaces ; 10(1): 635-641, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29278492

RESUMO

Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. This work unveils the importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.

17.
Angew Chem Int Ed Engl ; 57(4): 909-913, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29205697

RESUMO

Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

18.
RSC Adv ; 8(39): 21993-22003, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541707

RESUMO

Non-thermal plasma in ultrafine water mist (UWM) is proposed to increase the content of COOH groups on the surface of raw walnut shell in order to improve its performance in the removal of Cu(ii) from wastewater. The modified walnut shell surface was characterized by various techniques (BET, SEM-EDX and XPS), and it was observed that more COOH groups were generated. Oxygen disassociated from water mist by plasma bonded with the walnut shell to form activated sites of COOH groups. After Cu(ii) adsorption, the COOH group content in the walnut shell decreased because some groups were changed into C-O groups by Cu(ii) chemisorption with COOH groups. The Cu(ii) removal efficiency was 33.5% for raw walnut shell; however, the efficiency increased to 98% after plasma modification for 15 min under 3 g min-1 water mist. The maximum Cu(ii) adsorption capacity of the UWM-plasma-modified WNS was 39.4 mg g-1 at pH 5.3 and 25 °C, around 8 times that of the raw WNS. This implies that UWM-plasma modification is a potential method for improving the Cu(ii) adsorption performance of raw biomass.

19.
Inorg Chem Front ; 4(5): 820-824, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057079

RESUMO

Ni(II) ions have been deposited on the Zr6 nodes of a metal-organic framework (MOF), UiO-66, via an ALD-like process (ALD = atomic layer deposition). By varying the number of ALD cycles, three Ni-decorated UiO-66 materials were synthesized. A suite of physical methods has been used to characterize these materials, indicating structural and high-surface-area features of the parent MOF are retained. Elemental analysis via X-ray photoelectron spectroscopy (XPS) indicates that the anchored Ni ions are mainly on surface and near-surface MOF defect sites. Upon activation, all three materials are catalytic for ethylene hydrogenation, but their catalytic activities significantly vary, with the largest clusters displaying the highest per-nickel-atom activity. The study highlights the ease and effectiveness ALD in MOFs (AIM) for synthesizing, specifically, UiO-66-supported NiyOx catalysts.

20.
J Am Chem Soc ; 139(42): 15251-15258, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28976757

RESUMO

Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal-organic framework (MOF) NU-1000, have been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (<230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 followed by Co(II) ion deposition, yielding a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Using difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples, the promoter ions are sited between pairs of Zr6 nodes along the MOF c-axis, whereas the location of the cobalt ions varies with the promoter ions. These NU-1000-supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando X-ray absorption spectroscopy at the Co K-edge. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the following order: Mo(VI) < Ti(IV) < Al(III) < Zn(II) < Ni(II). The finding is attributed to increasing ease of formation of Co(III)-O• species and stabilization of a cobalt(III)-oxyl/propane transition state as the Lewis acidity of the promoter ions decreases. The results point to an increasing ability to fine-tune the structure-dependent activity of MOF-supported heterogeneous catalysts. Coupled with mechanistic studies-computational or experimental-this ability may translate into informed prediction of improved catalysts for propane ODH and other chemical reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...