Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11358, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762610

RESUMO

The dispersion stability of carbonyl iron particle (CIP)-based magnetorheological fluid (MRF) is improved by CIP, which particle is etched with hydrochloric acid (HCl) to form porous structure with many hydroxyl groups and subsequently coated with silane coupling agents that have varying chain lengths. The microstructures, coating effect and magnetism of the CIPs were examined using the Scanning Electron Microscopy, Automatic Surface and Porosity Analyzer (BET), Fourier-Transform Infrared Spectroscopy, Thermogravimetric Analysis and Vibrating Sample Magnetometer. Furthermore, the rheological properties and dispersion stability of the MRFs were assessed using a Rotating Rheometer and Turbiscan-lab. The results revealed that the nanoporous structure appeared on the CIPs and the specific surface area increased remarkably after being etched by hydrochloric acid. Additionally, as the chain length of the silane coupling agent increases, the coated mass on the particles increases, the the density and the saturation magnetization of particles decreased, and the coated particles with different shell thicknesses were obtained; without a magnetic field, the viscosity of MRF prepared by coated particles increase slightly, due to the enhancement of special three-dimensional network structure; under a magnetic field, the viscosity of the MRF decreased distinctly; the sedimentation rate of MRF decreased from 58 to 3.5% after 100 days of sedimentation, and the migration distances of the MRFs were 22.4, 3.7, 2.4, and 0 mm, with particle sedimentation rates of 0.149, 0.019, 0.017, and 0 mm/h, respectively. The MRF with high dispersion stability was obtained, and the etching of CIP by HCl and the proper chain length of the coating of silane coupling agent were proved effective manners to improve the dispersion stability of MRF.

2.
Nanomaterials (Basel) ; 11(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685094

RESUMO

The rheological properties of ferrofluids are related to various applications, such as sealing and loudspeakers, and have therefore attracted widespread attention. However, the rheological properties and their influence on the mechanisms of perfluoropolyether oil (PFPE oil)-based ferrofluids are complicated and not clear. Here, a series of PFPE oil-based ferrofluids were synthesized via a chemical co-precipitation method, and their rheological properties were revealed, systematically. The results indicate that the prepared Zn-ferrite particles have an average size of 12.1 nm, within a range of 4-18 nm, and that the ferrofluids have excellent dispersion stability. The activity of the ferrofluids changes from Newtonian to non-Newtonian, then to solid-like with increasing w from 10 wt% to 45.5 wt%, owing to their variation in microstructures. The viscosity of the ferrofluids increases with increasing Mw (the molecular weight of base liquid PFPE oil polymer), attributed to the increase in entanglements between PFPE oil molecules. The magnetization temperature variation of Zn-ferrite nanoparticles and viscosity temperature variation of PFPE oil together contribute to the viscosity temperature change in ferrofluids. The viscosity of the ferrofluids basically remains unchanged when shear rate is above 50 s-1, with increasing magnetic field strength; however, it first increases and then levels off when the rate is under 10 s-1, revealing that the shear rate and magnetic field strength together affect viscosity. The viscosity and its alteration in Zn-ferrite/PFPE oil-based ferrofluids could be deduced through our work, which will be greatly significant in basic theoretical research and in various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...