Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Chemosphere ; : 142820, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986777

RESUMO

A two-stage model integrating a spatiotemporal linear mixed effect (STLME) and a geographic weight regression (GWR) model is proposed to improve the meteorological variables-based aerosol optical depth (AOD) retrieval method (Elterman retrieval model-ERM). The proposed model is referred to as the STG-ERM model. The STG-ERM model is applied over the Beijing-Tianjin-Hebei (BTH) region in China for the years 2019 and 2020. The results show that data coverage increased by 39.0% in 2019 and 40.5% in 2020. Cross-validation of the retrieval results versus multi-angle implementation of atmospheric correction (MAIAC) AOD shows the substantial improvement of the STG-ERM model over earlier meteorological models for AOD estimation, with a determination coefficient (R2) of daily AOD of 0.86, root mean squared prediction error (RMSE) and the relative prediction error (RPE) of 0.10 and 36.14% in 2019 and R2 of 0.86, RMSE of 0.12 and RPE of 37.86% in 2020. The fused annual mean AOD indicates strong spatial variation with high value in south plain and low value in northwestern mountainous areas of the BTH region. The overall spatial seasonal mean AOD ranges from 0.441 to 0.586, demonstrating strongly seasonal variation. The coverage of STG-ERM retrieved AOD, as determined in this exercise by leaving out part of the meteorological data, affects the accuracy of fused AOD. The coverage of the meteorological data has smaller impact on the fused AOD in the districts with low annual mean AOD of less than 0.35 than that in the districts with high annual mean AOD of greater than 0.6. If available, continuous daily meteorological data with high spatiotemporal resolution can improve the model performance and the accuracy of fused AOD. The STG-ERM model may serve as a valuable approach to provide data to fill gaps in satellite-retrieved AOD products.

2.
Chem Sci ; 15(20): 7742-7748, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784746

RESUMO

Artificial metalloenzymes (ArMs) are constructed by anchoring organometallic catalysts to an evolvable protein scaffold. They present the advantages of both components and exhibit considerable potential for the in vivo catalysis of new-to-nature reactions. Herein, Escherichia coli surface-displayed Vitreoscilla hemoglobin (VHbSD-Co) that anchored the cobalt porphyrin cofactor instead of the original heme cofactor was used as an artificial thiourea oxidase (ATOase) to synthesize 5-imino-1,2,4-thiadiazoles. After two rounds of directed evolution using combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy, the evolved six-site mutation VHbSD-Co (6SM-VHbSD-Co) exhibited significant improvement in catalytic activity, with a broad substrate scope (31 examples) and high yields with whole cells. This study shows the potential of using VHb ArMs in new-to-nature reactions and demonstrates the applicability of E. coli surface-displayed methods to enhance catalytic properties through the substitution of porphyrin cofactors in hemoproteins in vivo.

3.
Foods ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397503

RESUMO

The escalating demand for processed foods has led to the widespread industrial use of glucose isomerase (GI) for high-fructose corn syrup (HFCS) production. This reliance on GIs necessitates continual Co2+ supplementation to sustain high catalytic activity across multiple reaction cycles. In this study, Serratia marcescens GI (SmGI) was immobilized onto surfaces of the metal-organic framework (MOF) material MOF (Co)-525 to generate MOF (Co)-525-GI for use in catalyzing glucose isomerization to generate fructose. Examination of MOF (Co)-525-GI structural features using scanning electron microscopy-energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, and ultraviolet spectroscopy revealed no structural changes after SmGI immobilization and the addition of Co2+. Notably, MOF (Co)-525-GI exhibited optimal catalytic activity at pH 7.5 and 70 °C, with a maximum reaction rate (Vmax) of 37.24 ± 1.91 µM/min and Km value of 46.25 ± 3.03 mM observed. Remarkably, immobilized SmGI exhibited sustained high catalytic activity over multiple cycles without continuous Co2+ infusion, retaining its molecular structure and 96.38% of its initial activity after six reaction cycles. These results underscore the potential of MOF (Co)-525-GI to serve as a safer and more efficient immobilized enzyme technology compared to traditional GI-based food-processing technologies.

4.
J Environ Sci (China) ; 140: 279-291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331508

RESUMO

Methane is one of the major greenhouse gases (GHGs) and agriculture is recognized as its primary emitter. Methane accounting is a prerequisite for developing effective agriculture mitigation strategies. In this review, methane accounting methods and research status for various agricultural emission source including rice fields, animal enteric fermentation and livestock and poultry manure management were overview, and the influencing factors of each emission source were analyzed and discussed. At the same time, it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation. Finally, mitigation strategies based on accounting results and actual situation are proposed. This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Agricultura/métodos , Metano/análise , Óxido Nitroso/análise , Aves Domésticas , Gado
5.
Math Biosci Eng ; 20(12): 20486-20509, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38124562

RESUMO

A flexible manipulator is a versatile automated device with a wide range of applications, capable of performing various tasks. However, these manipulators are often vulnerable to external disturbances and face limitations in their ability to control actuators. These factors significantly impact the precision of tracking control in such systems. This study delves into the problem of attitude tracking control for a flexible manipulator under the constraints of control input limitations and the influence of external disturbances. To address these challenges effectively, we first introduce the backstepping method, aiming to achieve precise state tracking and tackle the issue of external disturbances. Additionally, recognizing the constraints posed by control input limitations in the flexible manipulator's actuator control system, we employ a design approach based on the Nussbaum function. This method is designed to overcome these limitations, allowing for more robust control. To validate the effectiveness and disturbance rejection capabilities of the proposed control strategy, we conduct comparative numerical simulations using MATLAB/Simulink. These simulations provide further evidence of the robustness and reliability of the control strategy, even in the presence of external disturbances and control input limitations.

6.
Org Lett ; 25(39): 7115-7119, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37737085

RESUMO

Despite a well-developed and growing body of work on the directed evolution of hemoproteins, the potential of hemoproteins to catalyze non-natural reactions remains underexplored. This paper reports a new biocatalytic strategy for the one-pot synthesis of unnatural α-amino acids. Engineered variants of dual-function Vitreoscilla hemoglobin were found to efficiently catalyze N-H insertion and C-H sp3 alkylation, providing moderate to excellent yields (57%-95%) of unnatural α-amino acid derivatives and turnover numbers (1425-2375).

7.
Pharmaceutics ; 15(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631307

RESUMO

Peptides and proteins, two important classes of biomacromolecules, play important roles in the biopharmaceuticals field. As compared with traditional drugs based on small molecules, peptide- and protein-based drugs offer several advantages, although most cannot traverse the cell membrane, a natural barrier that prevents biomacromolecules from directly entering cells. However, drug delivery via cell-penetrating peptides (CPPs) is increasingly replacing traditional approaches that mediate biomacromolecular cellular uptake, due to CPPs' superior safety and efficiency as drug delivery vehicles. In this review, we describe the discovery of CPPs, recent developments in CPP design, and recent advances in CPP applications for enhanced cellular delivery of peptide- and protein-based drugs. First, we discuss the discovery of natural CPPs in snake, bee, and spider venom. Second, we describe several synthetic types of CPPs, such as cyclic CPPs, glycosylated CPPs, and D-form CPPs. Finally, we summarize and discuss cell membrane permeability characteristics and therapeutic applications of different CPPs when used as vehicles to deliver peptides and proteins to cells, as assessed using various preclinical disease models. Ultimately, this review provides an overview of recent advances in CPP development with relevance to applications related to the therapeutic delivery of biomacromolecular drugs to alleviate diverse diseases.

8.
J Colloid Interface Sci ; 649: 844-854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37390532

RESUMO

Cytotoxicity of nanoparticles, typically evaluated by biochemical-based assays, often overlook the cellular biophysical properties such as cell morphology and cytoskeletal actin, which could serve as more sensitive indicators for cytotoxicity. Here, we demonstrate that low-dose albumin-coated gold nanorods (HSA@AuNRs), although being considered noncytotoxic in multiple biochemical assays, can induce intercellular gaps and enhance the paracellular permeability between human aortic endothelial cells (HAECs). The formation of intercellular gaps can be attributed to the changed cell morphology and cytoskeletal actin structures, as validated at the monolayer and single cell levels using fluorescence staining, atomic force microscopy, and super-resolution imaging. Molecular mechanistic study shows the caveolae-mediated endocytosis of HSA@AuNRs induces the calcium influx and activates actomyosin contraction in HAECs. Considering the important roles of endothelial integrity/dysfunction in various physiological/pathological conditions, this work suggests a potential adverse effect of albumin-coated gold nanorods on the cardiovascular system. On the other hand, this work also offers a feasible way to modulate the endothelial permeability, thus promoting drug and nanoparticle delivery across the endothelium.


Assuntos
Actinas , Nanotubos , Humanos , Actinas/farmacologia , Endotélio Vascular , Células Endoteliais , Ouro/química , Albuminas , Nanotubos/química
9.
Anal Chim Acta ; 1265: 341335, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37230575

RESUMO

Pyruvate participates in diverse metabolic pathways in the body and is normally present in human blood at 40-120 µM, with concentrations outside this range associated with various diseases. Therefore, accurate and stable blood pyruvate level tests are necessary for effective disease detection. However, traditional analytical techniques require complicated instrumentation and are time consuming and expensive, prompting researchers to develop improved methods based on biosensors and bioassays. Here, we designed a highly stable bioelectrochemical pyruvate sensor affixed to a glassy carbon electrode (GCE). To maximize biosensor stability, 0.1 U of lactate dehydrogenase was affixed to the GCE using a sol-gel process, resulting in generation of Gel/LDH/GCE. Next, 2.0 mg/mL AuNPs-rGO was added to enhance current signal strength, resulting in generation of the bioelectrochemical sensor Gel/AuNPs-rGO/LDH/GCE. AuNPs-rGO synthesized in advance was verified as correct using transmission electron microscopy and UV-Vis, Fourier-transform infrared and X-ray photoelectron spectroscopy. Pyruvate detection conducted via differential pulse voltammetry in phosphate buffer (pH 7.4, 100 mM) at 37 °C for 1-4500 µM pyruvate provided detection sensitivity as high as 254.54 µA/mM/cm2. The reproducibility, regenerability and storage stability were analyzed with the relative standard deviation of 5 bioeletrochemical sensors detection was 4.60% and biosensor accuracy after 9 cycles was 92%, with accuracy remaining at 86% after 7 days. In the presence of D-glucose, citric acid, dopamine, uric acid and ascorbic acid, the Gel/AuNPs-rGO/LDH/GCE sensor exhibited excellent stability, high anti-interference ability and better performance than conventional spectroscopic methods for detection of pyruvate in artificial serum.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Ácido Pirúvico , L-Lactato Desidrogenase , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Carbono/química , Eletrodos , Técnicas Eletroquímicas/métodos
10.
RSC Adv ; 13(8): 5259-5265, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36793302

RESUMO

The transglutaminase (TGase) family catalyzes a transamidation reaction between glutamine (Gln) and lysine (Lys) residues on protein substrates. Highly active substrates are important for cross-linking and modifying proteins of TGase. In the present work, high-activity substrates have been designed based on the principles of enzyme-substrate interaction, using microbial transglutaminase (mTGase) as a research model of the TGase family. Substrates with high activity were screened using a combination of molecular docking and traditional experiments. Twenty-four sets of peptide substrates all produced good catalytic activity with mTGase. FFKKAYAV as the acyl acceptor and VLQRAY as the acyl donor group had the best reaction efficiency with highly sensitive detection of 26 nM mTGase. In addition, the substrate grouping, KAYAV and AFQSAY, detected 130 nM mTGase under physiological conditions (37 °C, pH 7.4), producing 20-fold higher activity than the natural substrate, collagen. The experimental results confirmed the potential for design of high-activity substrates by a combination of molecular docking and traditional experiments under physiological conditions.

11.
Sci Total Environ ; 857(Pt 3): 159673, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36288751

RESUMO

The data incompleteness of aerosol optical depth (AOD) products and their lack of availability in highly urbanized areas limit their great potential of application in air quality research. In this study, we developed an ensemble machine-learning approach that integrated random forest-based Space Interpolation Model (SIM) and deep neural network-based Time Interpolation Model (TIM) to achieve high spatiotemporal resolution dataset of AOD. The spatial interpolation model first filled the spatial gaps in the Level-2 Himawari-8 hourly AOD product in 0.05° (∼5 km) spatial resolution, while the time interpolation model further improved the temporal resolution to 10 min on its basis. A full-coverage AOD dataset of Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) in 2020 was obtained as a practical implementation. The validation against in-situ AOD observations from AERONET and SONET indicated that this new dataset was satisfactory (R = 0.80), and especially in spring and summer. Overall, our ensemble machine-learning model provided an effective scheme for reconstruction of AOD with high spatiotemporal resolution of 0.05° and 10 min, which may further advance the near-real-time monitoring of air-quality in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Aprendizado de Máquina
12.
Foods ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38231756

RESUMO

Fermented vegetable-based foods, renowned for their unique flavors and human health benefits, contain probiotic organisms with reported in vitro antioxidative effects. This study investigates the probiotic properties of Latilactobacillus sakei MS103 (L. sakei MS103) and its antioxidant activities using an in vitro oxidative stress model based on the hydrogen peroxide (H2O2)-induced oxidative damage of RAW 264.7 cells. L. sakei MS103 exhibited tolerance to extreme conditions (bile salts, low pH, lysozyme, H2O2), antibiotic sensitivity, and auto-aggregation ability. Moreover, L. sakei MS103 co-aggregated with pathogenic Porphyromonas gingivalis cells, inhibited P. gingivalis-induced biofilm formation, and exhibited robust hydrophobic and electrostatic properties that enabled it to strongly bind to gingival epithelial cells and HT-29 cells for enhanced antioxidant effects. Additionally, L. sakei MS103 exhibited other antioxidant properties, including ion-chelating capability and the ability to effectively scavenge superoxide anion free radicals, hydroxyl, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the addition of live or heat-killed L. sakei MS103 cells to H2O2-exposed RAW 264.7 cells alleviated oxidative stress, as reflected by reduced malondialdehyde levels, increased glutathione levels, and the up-regulated expression of four antioxidant-related genes (gshR2, gshR4, Gpx, and npx). These findings highlight L. sakei MS103 as a potential probiotic capable of inhibiting activities of P. gingivalis pathogenic bacteria and mitigating oxidative stress.

13.
Nat Commun ; 13(1): 7459, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460672

RESUMO

Quantitative estimations of atmospheric aerosol absorption are rather uncertain due to the lack of reliable information about the global distribution. Because the information about aerosol properties is commonly provided by single-viewing photometric satellite sensors that are not sensitive to aerosol absorption. Consequently, the uncertainty in aerosol radiative forcing remains one of the largest in the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC AR5 and AR6). Here, we use multi-angular polarimeters (MAP) to provide constraints on emission of absorbing aerosol species and estimate global aerosol absorption optical depth (AAOD) and its climate effect. Our estimate of modern-era mid-visible AAOD is 0.0070 that is higher than IPCC by a factor of 1.3-1.8. The black carbon instantaneous direct radiative forcing (BC DRF) is +0.33 W/m2 [+0.17, +0.54]. The MAP constraint narrows the 95% confidence interval of BC DRF by a factor of 2 and boosts confidence in its spatial distribution.

14.
Biomimetics (Basel) ; 7(4)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36546928

RESUMO

With the increase in population aging, the tendency of osteochondral injury will be accelerated, and repairing materials are increasingly needed for the optimization of the regenerative processes in bone and cartilage recovery. The local environment of the injury sites and the deficiency of Mg2+ retards the repairing period via inhibiting the progenitor osteogenesis and chondrogenesis cells' recruitment, proliferation, and differentiation, which results in the sluggish progress in the osteochondral repairing materials design. In this article, we elucidate the Mg2+-concentration specified effect on the cell proliferation, osteochondral gene expression, and differentiation of modeling chondrocytes (extracted from New Zealand white rabbit) and osteoblasts (MC3T3-E1). The concentration of Mg2+ in the culture medium affects the proliferation, chondrogenesis, and osteogenesis: (i) Appropriate concentrations of Mg2+ promote the proliferation of chondrocytes (1.25−10.0 mM) and MC3T3-E1 cells (2.5−30.0 mM); (ii) the optimal concentration of Mg2+ that promotes the gene expression of noncalcified cartilage is 15 mM, calcified cartilage 10 mM, and subchondral bone 5 mM, respectively; (iii) overdosed Mg2+ leads to the inhibition of cell activity for either chondrocytes (>20 mM) or osteoblasts (>30 mM). The biomimetic elucidation for orchestrating the allocation of gradient concentration of Mg2+ in accordance of the physiological condition is crucial for designing the accurate microenvironment in osteochondral injury defects for optimization of bone and cartilage repairing materials in the future.

15.
Ecol Evol ; 12(12): e9634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540080

RESUMO

The passive sampling hypothesis is one of the most important hypotheses used to explain the mechanism of species-area relationships (SAR) formation. This hypothesis has not yet been experimentally validated due to the confusion between passive sampling (a larger area may support more colonists when fully sampled) and sampling effects (more sampling effort will result in increased species richness when sampling is partial). In this study, we created an open microcosm system with homogeneous habitat, consistent total resources, and biodiversity background using Chinese paocai soup, a fermented vegetable, as a substrate. We made efforts to entirely exclude the influence of sampling effects and to exclusively obtain microorganisms from dispersal using microcosm and high-throughput sequencing techniques. However, in this study, passive sampling based on dispersal failed to shape SAR, and community differences were predominantly caused by species replacement, with only minor contributions from richness differences. Ecological processes including extinction and competitive exclusion, as well as underlying factors like temporal scales and the small island effects, are very likely to have been involved in the studied system. To elucidate the mechanism of SAR development, future studies should design experiments to validate the involvement of dispersal independently.

16.
Nutrients ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807773

RESUMO

Probiotics, active microorganisms benefiting human health, currently serve as nutritional supplements and clinical treatments. Periodontitis, a chronic infectious oral disease caused by Porphyromonas gingivalis (P. gingivalis), activates the host immune response to release numerous proinflammatory cytokines. Here, we aimed to clarify Leuconostoc mesenterica (L. mesenteroides) LVBH107 probiotic effects based on the inhibition of P. gingivalis activities while also evaluating the effectiveness of an in vitro P. gingivalis lipopolysaccharide-stimulated RAW 264.7 cell-based inflammation mode. L. mesenteroides LVBH107 survived at acid, bile salts, lysozyme, and hydrogen peroxide conditions, auto-aggregated and co-aggregated with P. gingivalis, exhibited strong hydrophobicity and electrostatic action, and strongly adhered to gingival epithelial and HT-29 cells (thus exhibiting oral tissue adherence and colonization abilities). Moreover, L. mesenteroides LVBH107 exhibited sensitivity to antibiotics erythromycin, doxycycline, minocycline, ampicillin, and others (thus indicating it lacked antibiotic resistance plasmids), effectively inhibited P. gingivalis biofilm formation and inflammation (in vitro inflammation model), reduced the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) and inflammatory mediators (NO and PGE2), and decreased the expression levels of inflammation related genes. Thus, L. mesenterica LVBH107 holds promise as a probiotic that can inhibit P. gingivalis biofilm formation and exert anti-inflammatory activity to maintain oral health.


Assuntos
Leuconostoc mesenteroides , Porphyromonas gingivalis , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Humanos , Inflamação , Leuconostoc mesenteroides/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7
17.
Pharmaceutics ; 14(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35456600

RESUMO

Hot melt extrusion (HME), a continuous manufacturing process for generating supersaturating amorphous self-micellizing solid dispersion systems (saSMSDs), holds promise for achieving amorphization of many pharmaceutical formulations. For saSMSDs generation, HME-triggered continuous processes offer advantages over traditional non-continuous processes such as fusion/quench cooling (FQC) and co-precipitation (CP). Here we employed HME, FQC, and CP to generate saSMSDs containing the water-insoluble BCS II drug nitrendipine (NIT) and self-micellizing polymer Soluplus®. Scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry results revealed that saSMSDs formed when NIT-Soluplus® mixtures were subjected to the abovementioned amorphization methods. All saSMSDs outperformed crystalline NIT preparations and physical mixtures in achieving extended supersaturable immediate release states with superior solubility, "spring-parachute" process characteristics, and dissolution behaviors. Notably, Fourier transform-infrared spectroscopic results obtained for saSMSDs detected hydrogen bonding interactions between the drug and the carrier. Ultimately, our results revealed the advantages of HME-triggered amorphization as a continuous process for significantly improving drug dissolution, increasing solubility, and maintaining supersaturation as compared to traditional amorphization-based techniques.

18.
Microb Pathog ; 164: 105446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35167954

RESUMO

Streptococcus mutans (S. mutans) is the most important oral pathogenic bacterial cause of dental caries. Here we investigated the abilities of probiotic lactobacillus strains of Lactobacillus curvatus (L. curvatus) BSF206 and Pediococcus pentosaceus (P. pentosaceus) AC1-2 to control S. mutans. Both probiotic strains are acid and bile salt tolerant and are resistant to hydrogen peroxide and lysozyme to promote their survival within the oral environment. In addition, both strains are highly hydrophobic and are also capable of engaging in electrostatic interactions. These properties enhance abilities of both strains to adhere to gingival epithelial cells and HT-29 for improved colonization of oral tissues, while also enabling these probiotics auto-aggregate and to form aggregates with S. mutans that both may prevent S. mutans from colonizing oral tissues and facilitate the clearance of the cariogenic bacteria from the mouth during swallowing of food and saliva. Furthermore, results presented herein revealed that L. curvatus BSF206 and P. pentosaceus AC1-2 effectively inhibited S. mutans activities (biofilm formation, secretion of extracellular matrix components, synthesis of water-insoluble glucans) and led to downregulation of expression of key S. mutans genes involved in biofilm production (gtfA, gtfB, ftf, brpA). Taken together, these results indicate that L. curvatus BSF206 and P. pentosaceus AC1-2 can inhibit S. mutans biofilm formation as a new strategy for preventing dental caries.


Assuntos
Cárie Dentária , Probióticos , Antibacterianos/farmacologia , Biofilmes , Cárie Dentária/prevenção & controle , Humanos , Lactobacillus/fisiologia , Pediococcus pentosaceus , Probióticos/farmacologia , Streptococcus mutans
19.
Sci Total Environ ; 807(Pt 2): 150871, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634351

RESUMO

Black and Brown Carbon (BC, BrC) are key parameters of climate forcing, yet significant challenges exist assigning emission source contributions to light-absorption by carbonaceous aerosols. Additionally, BC and BrC emissions add to extreme air pollution events in Chinese mega-cities, which harm human health and detract from the natural and built environment. To address these concerns, the ability to estimate atmospheric light absorption related to emission sources and global inventories is a highly valuable tool for climate modelers and policy makers. Three months of BC and BrC data was collected using an Aethalometer in parallel to PM2.5 filter sampling during a stringent emission controls period and post controls period, including during the regional heating season. In this study reconstructed 370 nm wavelength absorption was calculated by applying source specific Mass Absorption Cross-Sections to PMF apportioned EC and OC results. Reconstructed absorption showed good agreement with the ambient measured absorption for both BC and BrC. In Beijing, the major contributor to near-UV absorption was mobile sources, which accounted for 45-54% of absorption by BC and 14-18% by BrC. BrC absorption from secondary aerosols, biomass burning, and soil dust was also estimated, with these sources contributing from 1 to 9% individually. Meteorological cluster analysis showed that air mass origin did not impact the absorption reconstruction and that the highest regional contribution to near-UV light absorption originated primarily in areas south and east of Beijing. The study shows ambient near-UV light absorption can be predicted using BC and BrC MAC values from sources. However, the current number of multi-wavelength and source specific BrC MAC values reported in the literature is limited. The reconstruction approach allows for a more robust method of assigning light absorption to source categories, allowing the expansion of aethalometer derived BrC apportionment to multiple sources, including biomass burning.


Assuntos
Carbono , Raios Ultravioleta , Aerossóis/análise , Pequim , Carbono/análise , China , Humanos
20.
J Environ Manage ; 302(Pt B): 114121, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801865

RESUMO

Data gaps in satellite aerosol optical depth (AOD) retrievals pose a huge challenge in near real-time air quality assessment. Here, we present a multimodal aerosol data fusion approach to integrate multisource AOD and air quality data for the generation of full coverage AOD maps at hourly resolution. Specifically, data gaps in each Himawari-8 AOD snapshot were partially filled by merging all available daytime AOD snapshots, and these partially gap-filled AOD maps were then fused with coarse yet spatially complete numerical AOD simulations to generate full coverage AOD imageries. Ground-based air quality measurements, including concentrations of PM2.5, PM10, NO2, and SO2, were simultaneously assimilated into gridded AOD fields to enhance the overall data accuracy. A practical implementation of the proposed method was illustrated by generating hourly full-coverage AOD maps in China from 2015 to 2020, and the validation results indicate this new AOD dataset agreed well with ground-based AOD measurements (R = 0.83), from which a ubiquitous AOD decreasing trend was revealed, especially during the noontime. Moreover, the hourly resolution and full-coverage advantages of this AOD dataset allow us to better assess spatiotemporal variations of PM10 and PM2.5 pollution that occurred in China. Overall, the proposed method paves a new way as big data analytics to advance regional air pollution assessment given the full coverage capacity and enhanced accuracy of the resulting AOD and PM concentration data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Confiabilidade dos Dados , Monitoramento Ambiental , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...