Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126343, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823325

RESUMO

The van der Waals heterojunction is able to combine the advantages of different materials and has potential to be used in biosensing researches. In this study, we developed a novel van der Waals heterojunction by combining MXene and MoS2 nanosheets for the electrochemiluminescence (ECL) sensing applications. This van der Waals heterojunction material not only possessed the superior conductivity of MXene, but also regulated the electron transport. Additionally, the incorporation of MoS2 nanosheets into the MXene interlayers significantly enhances the material stability. Meanwhile, nitrogen-rich quantum dots (N dots) were synthesized as ECL tags with an impressive nitrogen content of up to 75 %. By integrating the ECL response of N dots within the van der Waals heterojunction, we established a highly efficient sensing system for miRNA-373, which overexpressed in triple negative breast cancer tissues. The van der Waals heterojunction-based biosensor can enhance the ECL signal of N dots effectively to detect miRNA-373 from 1 fM to 1 µM. Consequently, the developed sensing system holds promise for the early detection of metastasis of the triple-negative breast cancer, paving the way for the effective clinical interventions.

2.
Sci Total Environ ; 946: 174251, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936736

RESUMO

Recently, bisphenol AF (BPAF) as most commonly used bisphenol A analogs had the increasing higher level in the environment with unknown risks. Herein, a synchronous dual-mode sensor had been established based on differential pulse voltammetry (DPV) and electrochemiluminescence (ECL) for the detection of BPAF in pond mud. Firstly, the sensing molecularly imprinted polymer (MIP) films were prepared by electrochemical polymerization procedure with 3,4-ethoxylene dioxy thiophene (EDOT) as the functional monomer, BPAF as the template molecule and MXene as the supporting electrolyte. Due to unique characters of PEDOT and MXene, the constructed MIP films were stable and highly conductive. Meanwhile, zinc-doped bismuth sulfide quantum dots (Zn-Bi2S3 QDs) were synthesized as a nano-emitter to generate strong ECL signals in the MIP film. In the sensing process, a pulsed voltage applied to the PEDOT/MXene MIP film to generate both DPV and ECL signals for simultaneous dual-mode detection. Additionally, the liquid-liquid extraction with deep eutectic solvent (menthol: octanol 1:1) was used for the pre-concentration of the BPAF in the pond mud. Based on the sensing system, the ECL and DPV response showed the good linear relationships with the concentration of BPAF with the ranges of 0.01 µM-50 µM and 0.1 µM-50 µM and the detection limits of 0.0060 µM and 0.059 µM, respectively.

3.
Anal Chim Acta ; 1314: 342792, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876514

RESUMO

Thyroid cancer is the most prevalent endocrine malignancy. The development of sensitive and reliable methods to detect the thyroid cancer is the currently urgent requirement. Herein, we developed an electrochemiluminescence (ECL) biosensor based on MBene derivative quantum dots (MoB QDs) and Ag NP-on-mirror (NPoM) nanocavity structure. On the one hand, MBene QDs as a novel luminescent material in the ECL process was reported for the first time, which can react with H2O2 as co-reactant. On the other hand, the NPoM nanostructure was successfully constructed with the Ag mirror and Ag NPs to provide highly localized hot spots. The NPoM structure had high degree of light field confinement and electromagnetic field enhancement, which can amplify the ECL signal as the signal modulator. Therefore, the synergistic effect of the nanocavity and localized surface plasmon resonance (LSPR) mode in the NPoM facilitated the enhancement of the ECL signal of MoB QDs over 21.7 times. Subsequently, the proposed ECL biosensing system was employed to analyze the expression level of miRNA-222-3p in the thyroid cancer exosome. The results indicated the relative association between miRNA-222-3p and BRAFV600E mutation. The MoB QDs/NPoM biosensor displayed the ideal potential in assessing thyroid cancer progression for advancing clinical diagnosis applications.


Assuntos
Exossomos , MicroRNAs , Pontos Quânticos , Neoplasias da Glândula Tireoide , MicroRNAs/análise , Pontos Quânticos/química , Humanos , Exossomos/química , Neoplasias da Glândula Tireoide/diagnóstico , Medições Luminescentes , Técnicas Eletroquímicas , Técnicas Biossensoriais , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção
4.
Biosens Bioelectron ; 258: 116356, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705073

RESUMO

In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.


Assuntos
Técnicas Biossensoriais , Európio , Glioblastoma , Ouro , Estruturas Metalorgânicas , MicroRNAs , MicroRNAs/análise , Glioblastoma/diagnóstico , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Európio/química , Limite de Detecção , Medições Luminescentes/métodos , Ligantes , Técnicas Eletroquímicas/métodos , Neoplasias Encefálicas/diagnóstico , Ácidos Ftálicos/química , Nanopartículas Metálicas/química , Cobre/química
5.
Talanta ; 276: 126214, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718647

RESUMO

In this work, miRNA-10b in the glioblastoma (GBM) tumor tissues has been detected by a novel electrochemiluminescence (ECL) biosensor. Firstly, a new kind of bright luminescent Zn2GeO4:Mn NPs were prepared as ECL nanoprobe, which possessed high fluorescence quantum yield and ECL quantum efficiency. Secondly, Ti3C2 MXene hydrogel (MXG) have been developed as the sensing interface. The MXG retained the inherent biocompatibility and mechanical features of hydrogel. Furthermore, the uniform distribution of metallic Ti3C2 MXene in the hydrogel microstructure provided the good conductivity and multiple binding sites for biomolecules. MXene also can promote the separation of the electrons and holes to accelerate the electron-transfer rate and improve ECL efficiency. Due to these synergistic effects, the screen printed electrode was successfully modified with MXG as sensing platform to enhance the ECL intensity of Zn2GeO4:Mn NP, which greatly improved the detection efficiency and facilitated the high-throughput analysis. Finally, the toehold mediated strand displacement (TMSD) strategy was employed with then biosensor to detect miRNA-10b with the range of 10 fM to 1 nM. The limit of detection was 5 fM. This ECL biosensor has been used to analyze miRNA-10b expression in GBM tumor tissues, which possessed the great potential value for clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Glioblastoma , Hidrogéis , Medições Luminescentes , MicroRNAs , Glioblastoma/diagnóstico , Humanos , Técnicas Biossensoriais/métodos , MicroRNAs/análise , Hidrogéis/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Zinco/química , Nanopartículas Metálicas/química , Neoplasias Encefálicas/diagnóstico , Titânio
6.
Talanta ; 276: 126289, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776779

RESUMO

Aggregation-induced emission (AIE) has been widely used in research on electrochemiluminescence (ECL) due to its excellent luminescence intensity. In this work, copper superparticles (Cu SPs) were used to construct ECL biosensor to detect the microRNA-103a (miRNA-103a) in triple-negative breast cancer (TNBC) tumor tissues. Firstly, GSH-capped copper clusters were used as precursors to prepare Cu SPs by the AIE effect. Compared with clusters, Cu SPs possessed higher luminescence performance and energy stability, making them an ideal choice for ECL nanoprobe. The film of PVDF-HFP/CeVO4 NPs was constructed and modified with CPBA and GSH as the sensing interface (PCCG). The PCCG film displayed good conductivity and hydrophilicity, and desirable mechanical stability. Moreover, the PCCG film can induce high carrier mobility rates and dissociate large amounts of the co-reactant K2S2O8 to enhance the ECL intensity of Cu SPs. As a result, the prepared ECL sensor with the catalyzed hairpin assembly (CHA) strategy was employed to quantify miRNA-103a in the range of 100 fM to 100 nM. The biosensor provided a novel analytical approach for the clinical diagnosis of TNBC.


Assuntos
Técnicas Biossensoriais , Cobre , MicroRNAs , MicroRNAs/análise , Cobre/química , Humanos , Técnicas Biossensoriais/métodos , Polivinil/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Neoplasias de Mama Triplo Negativas/genética
7.
Anal Chem ; 96(12): 4909-4917, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489746

RESUMO

Due to the ideal optical manipulation ability, the metasurface has broad prospects in the development of novel optical research. In particular, an active metasurface can control optical response through external stimulus, which has attracted great research interest. However, achieving effective modulation of the optical response is a significant challenge. In this work, we have developed a novel electrochemiluminescence (ECL) signal modulation strategy by an active magnetoplasmonic metasurface under an external magnetic field. The magnetoplasmonic metasurface was assembled based on yolk-shell Fe3O4@Au nanoparticles (Fe3O4@Au YS-NPs). On the one hand, the yolk-shell structure of Fe3O4@Au YS-NPs possessed the surface plasmon coupling effect and cavity-based Purcell effect, which provided high-intensity electromagnetic hot spots in the magnetoplasmonic metasurface. On the other hand, due to the strong magnetic response of the Fe3O4 core, the local magnetic field was induced by the external magnetic field, which further generated Lorentz force acting on the free electrons of Au nanoshells with strong optical anisotropy. The plasmon frequency of the metasurface can be effectively modulated by the Lorentz force effect. As a result, the ECL signal of nitrogen dots (N dots) was dynamically modulated and significantly enhanced at a specific polarization angle by the magnetoplasmonic metasurface under the variable external magnetic field. Based on the luminescence modulation ability and structure feature, the magnetoplasmonic metasurface was further established successfully as a sensing interface for gastric cancer (GC) extracellular vesicle (EV) detection. This study illustrated that the electromagnetic response of the active metasurface can effectively improve the optical modulation ability and luminescence sensing performance.

8.
Food Chem ; 444: 138594, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38309076

RESUMO

Herein, a novel electrochemiluminescence (ECL) and differential pulse voltammetry (DPV) dual-mode-based molecularly imprinted (MIP) sensor had been established for the detection of enrofloxacin (ENR) in eggs. Firstly, bismuth sulfide quantum dots (Bi2S3 QDs) as ECL luminophore were synthesized. Furthermore, a MIP film with ionic liquid (ILs), Bi2S3 QDs, and ENR was prepared via the electrochemical polymerization procedure on the electrode. As ENR was identified and captured by the imprinted cavities, the electron transfer pathway was blocked on the electrochemical interface, resulting in the decrease of both DPV signals and ECL signals. As a novel synchronous dual-mode sensing strategy, a pulsed voltage was applied to produce both the DPV signal and ECL signal simultaneously. The ECL and DPV response showed the good linear relationships with the concentration of ENR with the ranges of 0.5 Nm-25 µM and 5 nM-25 µΜ and the detection limits of 0.13 nM and 1.59 nM, respectively.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Pontos Quânticos , Enrofloxacina , Impressão Molecular/métodos , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
9.
Anal Chem ; 95(38): 14253-14260, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37712625

RESUMO

The combination of the electrochemiluminescence (ECL) technique with nanophotonics research can spark new analytical and sensing applications. Herein, we developed a novel modulation strategy of the ECL polarization angle based on the dynamically tunable few-layer metasurface. The bilayer metasurface consisted of a fixed Au-Ag core-shell nanocube array (Au@Ag NCA) layer with strong plasmonic hot spots and different amounts of the Au nanoparticles@MoS2 heterostructure nanosheet (0D-2D HNS) layer with strong metal-support interaction. Due to the interference and near-field coupling between layers, the bilayer metasurface can strongly redistribute the local electromagnetic field and energy in the ECL system, which not only significantly amplified the ECL signal but also modulated the polarization coupling angle. Therefore, the novel ECL polarization angle-resolved sensing strategy has been developed, which was beneficial to improve the sensitivity and resolution of ECL sensing. A dynamically tunable metasurface-based ECL biosensor was successfully used to detect the asthma-related miRNA-142-3p (miR-142-3p). Moreover, the simulation calculations of the electromagnetic field revealed the unique optical activity of the metasurface. This study brought the insightful understanding of the metasurface-modulated optical signal and provided a new idea to construct novel sensing platforms.

10.
Biosens Bioelectron ; 240: 115663, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678060

RESUMO

MiRNAs played critical roles in triple negative breast cancer (TNBC) as potential biomarkers. Herein, an efficient signal "off-on" mode-biosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) was successfully constructed for the miRNA-150-5p determination in TNBC. The ECL-RET regulated-sensing platform consisted of NiMn-LDHs nanoflowers, the artificially assembled phospholipid bilayers and hairpin DNA-labeled Eu-doped MoS2 QDs. Firstly, Eu-doped MoS2 QDs with high quantum efficiency were prepared as the ECL-RET donors. And NiMn-layer double hydroxides (LDHs) nanoflowers with wide UV-vis absorption spectra as the ECL-RET acceptors. Secondly, due to the hairpin DNA structure, the closed distance between ECL-RET donor-acceptor pair can quench the luminescence signal of Eu-doped MoS2 QDs. When miRNA-150-5p was captured, the hairpin DNA structure changed to a rodlike configuration and enlarged the distance between Eu-doped MoS2 QDs and NiMn-LDHs. As a result, the recovery of ECL signal can be observed as a signal "turn off-on" mode. Furthermore, the hydrophilicity of the lipid bilayer can reduce the nonspecific adsorption and improve the flexibility of the hairpin DNA efficiently. Therefore, based on the ECL-RET regulation strategy, the biosensor was employed to detect miRNA-150-5p from 10 fM to 1 nM with a detection limit of 1.5 fM. The constructed biosensor can effectively differentiate TNBC patient tumor and healthy breast fibroadenoma. The ECL-RET regulation strategy provided a new biosensing pathway for ultrasensitive detection of biomolecules and promoted the development of diagnosis and treatment of TNBC.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Molibdênio , Transferência de Energia , MicroRNAs/genética
11.
Talanta ; 265: 124925, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437396

RESUMO

The combination of highly sensitive electrochemiluminescence (ECL) techniques with localized surface plasmon resonance (LSPR) effect can achieve the highly sensitive and specific detection in the analytical and biosensing applications. However, how to effectively improve the electromagnetic field intensity is an unresolved issue. Herein, we have developed an ECL biosensor based on sulfur dots and Au@Ag nanorod array architecture. Firstly, the high luminescent sulfur dots with ionic liquid capping (S dots (IL) have been prepared as the new ECL emitter. The ionic liquid greatly improved the conductivity of sulfur dots in the sensing process. Furthermore, Au@Ag nanorods array structure was constructed on the electrode surface by the evaporation induced self-assembly. On the one hand, the LSPR of Au@Ag nanorods was more significant than that of good nanomaterial due to the plasma hybridization and the competition between free electrons and oscillating electrons. On the other hand, nanorods array structure had strong electromagnetic field intensity as hot spots due to the surface plasmon coupling ECL effect (SPC-ECL) effect. Therefore, the Au @Ag nanorods array architecture not only greatly enhanced the ECL intensity of sulfur dots, but also changed the ECL signals into polarized emission. Finally, the constructed polarized ECL sensing system was used to detect the mutated BRAF DNA in the eluent of thyroid tumor tissue. The biosensor showed the linear range from 100 fM to 10 nM with a detection limit of 20 fM. The satisfactory results demonstrated that the developed sensing strategy had great potential in the clinical diagnosis of BRAF DNA mutation in thyroid cancer.

12.
Anal Chem ; 95(25): 9706-9713, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294618

RESUMO

In this study, a novel surface plasmon-coupled electrochemiluminescence (SPC-ECL) biosensor was developed based on bismuth nano-nest and Ti3CN quantum dots (Ti3CN QDs). First, MXene derivative QDs (Ti3CN QDs) with excellent luminescence performance were prepared as the ECL luminescent. The N doping in Ti3CN QDs can effectively improve the luminescence performance and catalytic activity. Therefore, the luminescence performance of QDs has been effectively improved. Furthermore, the bismuth nano-nest structure with a strong localized surface plasmon resonance effect has been designed as the sensing interface via the electrochemical deposition method. It was worth noticed that the morphology of bismuth nanomaterials can be controlled effectively on the electrode surface by the step potential method. Due to the abundant surface plasmon hot spots generated between the bismuth nano-nests, the isotropic ECL signal of Ti3CN QDs can be not only significantly enhanced by 5.8 times but also converted into polarized emission. Finally, the bismuth nano-nest/Ti3CN QD-based SPC-ECL sensor was used to quantify miRNA-421 in the range of 1 fM to 10 nM. The biosensor has been successfully used for miRNA in ascites samples from gastric cancer patients, which indicated that the SPC-ECL sensor developed in this study has great potential for clinical analysis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Pontos Quânticos , Humanos , Pontos Quânticos/química , Bismuto , Ascite , Medições Luminescentes/métodos , Titânio , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
13.
Talanta ; 259: 124559, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080077

RESUMO

Exosomes play an important role in the proliferation, adhesion and migration of cancer cells. In this study, we have developed a novel electrochemiluminescence (ECL) sensor based on MoS2 QDs-MXene heterostructure and Au NPs@biomimetic lipid layer to detect exosomal miRNA. MoS2 QDs-MXene heterostructure had been prepared as the luminescence probe. Ti3C2Tx MXene nanosheets possessed the large specific surface area, excellent flexibility and superior conductivity. MoS2 QDs on the MXene nanosheets worked as the radiation center to generate strong ECL signal. Meanwhile, Au NPs with biomimetic lipid layer have been modified on the electrode, which retained the lipid dynamics and excellent antifouling property. When miRNA-135b was recognized on the Au NPs@biomimetic lipid layer, MoS2 QDs-MXene heterostructure was linked on the electrode and further extended the outer Helmholtz plane. As a result, the self-luminous Faraday cage-mode sensing system has been used to detect miRNA-135b from 30 fM to 20 nM with a detection limit of 10 fM. Furthermore, gastric cancer exosomal miRNA in the ascites of clinical patients has been detected successfully. The sensing system can be served as a versatile platform with huge application potential in the field of exosome detection.


Assuntos
Técnicas Biossensoriais , Exossomos , MicroRNAs , Pontos Quânticos , Neoplasias Gástricas , Humanos , Molibdênio , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Medições Luminescentes , Pontos Quânticos/química , Lipídeos , Técnicas Eletroquímicas
14.
Biosens Bioelectron ; 228: 115225, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924689

RESUMO

In this work, a novel ECL biosensor has been developed based on bimetallic MXene derivative QDs (Mo2TiC2 QDs) and SnS2 nanosheets/lipid bilayer to detect the gastric cancer marker miRNA-27a-3p. On the one hand, the inter-band excitation of Mo2TiC2 QDs can inject the additional carriers, which were less suppressed by boundary effects and made a significant contribution to the luminescence process. Semiconductor Mo2TiC2 further inhibited the formation of internal electric field and potential oxidation. Therefore, Mo2TiC2 QDs processed superior luminous intensity and better stability. On the other hand, SnS2 nanosheets coated with phospholipid bilayer were designed as sensing interface. SnS2 nanosheets not only enhanced the luminous intensity of Mo2TiC2 QDs by virtue of their large surface area and low dielectric constant, but also improved the stability of lipid bilayer. Due to the excellent properties and synergy work of Mo2TiC2 QDs and the lipid bilayer-modified SnS2 nanosheets, the sensing system displayed high sensitivity and good reproducibility in the analysis application. As a result, the biosensor displayed good linear correlation between the ECL intensity and the concentration of miRNA-27a-3p over a wide range from 1 fM to 10 nM with the detection limit as low as 1 fM. The sensing system including the joint contribution of Mo2TiC2 QDs, SnS2 nanosheets and lipid bilayers had great potential for clinical applications.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Pontos Quânticos , Medições Luminescentes , Reprodutibilidade dos Testes , Bicamadas Lipídicas , MicroRNAs/análise , Técnicas Eletroquímicas
15.
Anal Chim Acta ; 1238: 340607, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464432

RESUMO

Copper nanoclusters (Cu NCs) were a new class of non-toxic and economical nanoprobe. However, the low luminescence performance and instability of Cu NCs limited the actual application. Herein, this work developed the novel controllable assembly of Cu NCs aggregation as the electrochemiluminescence (ECL) emitter. Firstly, the hydrophilic Cu NCs was located into the micelles in the reverse microemulsion system. Due to the uniform size of micelles, the number of Cu NCs in each micelle can be controlled exactly. Cerium ions were added to induce Cu NCs to accumulate in micelles. The strong aggregation induced ECL (AIECL) signal can be observed in the controllable assembly of Cu NCs aggregation. The nano-sized Cu NCs assembly not only possessed more strong luminescence and better stability than original Cu NCs, but also kept the good dispersibility over the aggregated bulk. Furthermore, SnS2 nanosheets increased the specific surface area of the electrode and the number of reactive sites, which further modulated electron transfer to amplify the ECL signal. The ECL sensing system was used to detect miRNA-455-3p in the triple-negative breast cancer tumor tissues. The work provided the new pathway to prepare Cu NCs assembly and expanded AIECL-based sensing application.


Assuntos
Cério , MicroRNAs , Micelas , Cobre , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...