Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Psychiatry Res ; 339: 116074, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986177

RESUMO

BACKGROUND: Physical Exercise Therapy (PET) is increasingly applied in the treatment of Autism Spectrum Disorders (ASD), yet the empirical evidence supporting its efficacy remains ambiguous. This systematic review and meta-analysis aimed to investigate the effectiveness of PET for individuals with ASD, providing evidence-based support for clinical and scientific research. METHODS: We systematically searched four international databases (Medline via PubMed, Embase, Cochrane Libraries, and Web of Science) and three Chinese databases (CNKI, Wanfang, and VIP Libraries) up to July 31, 2023. The search was conducted in both English and Chinese for original research articles employing randomized-controlled-trial (RCT) designs to study PET's effects on individuals diagnosed with ASD according to DSM or other established criteria. Co-primary outcomes focused on the overall severity of autism, while secondary outcomes included measures of stereotyped behaviors, social deficits, social skills, and executive functioning. Data from the included studies were synthesized and analyzed using RevMan 5.4. This systematic review is registered with PROSPERO (CRD42023443951). RESULTS: A total of 28 RCTs comprising 1081 participants were analyzed. Of these, only three studies met high-quality standards. Compared to control groups, PET showed improvement in at least one core symptom of autism, including Motor Performance (SMD=1.72, 95%CI[1.01, 2.44], I2=90%), Restricted Repetitive Behaviors (SMD=-0.81, 95%CI[-1.00, -0.62], I2=0%), Social Dysfunction (SMD=-0.76, 95%CI[-1.06, -0.46], I2=47%). CONCLUSIONS: PET may offer benefits in reducing the overall severity and associated symptoms in individuals with ASD. However, given the high overall risk of bias in the included studies, these findings should be interpreted with caution.

2.
Int J Biol Macromol ; 275(Pt 2): 133698, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972654

RESUMO

Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.

3.
Biomed Pharmacother ; 177: 117134, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013225

RESUMO

Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38829385

RESUMO

Garlic exhibits hypolipidemic, hypoglycemic, and cardiovascular benefits. The inconsistent results of garlic preparations on adipogenesis have caused more confusion in the public and academia. The compounds responsible for the anti-adipogenesis effect of garlic remain unknown. The present study aimed to verify the real anti-adipogenesis and anti-obesity component in garlic and explored its possible effects in metabolic syndrome. We verified the real anti-adipogenesis and anti-obesity components of garlic in 3T3-L1 preadipocytes and a 10-week-high fat diet (HFD)-induced obese mice. In vitro, two water-soluble and four typical lipid-soluble compounds of garlic were tested for their anti-adipogenesis. Then, the water-soluble compound, alliin, and two processing methods produced garlic oils, were evaluated in vivo study. Mice received oral administration of alliin (25 mg/kg) and garlic oils (15 mg/kg) daily for 8 weeks. Serum lipids, parameters of obesity, and indicators involved in regulating glycolipid metabolism were examined. Our findings confirmed that both water-soluble and lipid-soluble organosulfur compounds of garlic contributed to garlic's anti-adipogenesis effect, in which water-soluble sulfides, especially alliin, exhibited greater potency. Alliin possessed potent effects of anti-obesity and improvement in glucose and lipid metabolism in HFD-induced obese mice. Alliin mediated these effects partly attributed to its modulation of enzymatic activities within glycolipid metabolism and activating PPARγ signaling pathway. In contrast to odorous lipid-soluble sulfides, alliin is odorless, stable, and safe, and is an ideal nutraceutical or even medicinal candidates for the treatment of metabolic diseases. Alliin could be used to standardize the quality of garlic products.

5.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890950

RESUMO

The global demand for protein is on an upward trajectory, and peanut protein powder has emerged as a significant player, owing to its affordability and high quality, with great future market potential. However, the industry currently lacks efficient methods for rapid quality testing. This research paper addressed this gap by introducing a portable device with employed near-infrared spectroscopy (NIR) to quickly assess the quality of peanut protein powder. The principal component analysis (PCA), partial least squares (PLS), and generalized regression neural network (GRNN) methods were used to construct the model to further enhance the accuracy and efficiency of the device. The results demonstrated that the newly established NIR method with PLS and GRNN analysis simultaneously predicted the fat, protein, and moisture of peanut protein powder. The GRNN model showed better predictive performance than the PLS model, the correlation coefficient in calibration (Rcal) of the fat, the protein, and the moisture of peanut protein powder were 0.995, 0.990, and 0.990, respectively, and the residual prediction deviation (RPD) were 10.82, 10.03, and 8.41, respectively. The findings unveiled that the portable NIR spectroscopic equipment combined with the GRNN method achieved rapid quantitative analysis of peanut protein powder. This advancement holds a significant application of this device for the industry, potentially revolutionizing quality testing procedures and ensuring the consistent delivery of high-quality products to fulfil consumer desires.

6.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780509

RESUMO

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Assuntos
Ácidos Aminossalicílicos , Fibroblastos , Fibrose Peritoneal , Fenótipo , Fator de Transcrição STAT3 , Transdução de Sinais , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/genética , Fator de Transcrição STAT3/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Camundongos , Ácidos Aminossalicílicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Peritônio/patologia , Peritônio/metabolismo , Interleucina-6/metabolismo , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Diálise Peritoneal/efeitos adversos , Benzenossulfonatos
7.
J Pharm Pharmacol ; 76(7): 884-896, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708970

RESUMO

OBJECTIVES: Acute kidney injury (AKI) caused by cisplatin (CDDP) is a complex, critical illness with no effective or specific treatment. The purpose of the study was to assess the protective effect of protopanaxadiol (PPD) on the kidneys in CDDP-induced AKI models and its possible mechanisms. METHODS: In vitro, the protection of PPD was assessed in HK-2. KM mice were injected with CDDP to induce AKI models in vivo. The determination of blood urea nitrogen and serum creatinine (SCr) was performed, and pathological changes were examined by histopathological examination. Immunostaining and western blot analyses were used to analyze the expression levels of proteins. RESULTS: PPD can increase the viability of HK-2 cells damaged by CDDP, improve cell morphology, and alleviate the symptoms of AKI in mice. In addition, PPD can down-regulate the protein expression of TRF and up-regulate the protein expression of Ferritin heavy chain, Glutathione peroxidase 4, and ferroptosis suppressor protein 1 reduce the iron content in cells and kidney tissues, and restore the antioxidant defense system. CONCLUSION: PPD has an inhibitory effect on cisplatin-induced nephrotoxicity, which may be related to the inhibition of ferroptosis by regulating iron metabolism and lipid peroxidation.


Assuntos
Injúria Renal Aguda , Cisplatino , Ferroptose , Sapogeninas , Cisplatino/toxicidade , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Ferroptose/efeitos dos fármacos , Camundongos , Sapogeninas/farmacologia , Humanos , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Modelos Animais de Doenças , Linhagem Celular , Peroxidação de Lipídeos/efeitos dos fármacos , Ferro/metabolismo , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos
8.
Angew Chem Int Ed Engl ; : e202400688, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805343

RESUMO

Separating helium (He) and hydrogen (H2), two gases that are extremely similar in molecular size and condensation properties, presents a formidable challenge in the helium industry. The development of membranes capable of precisely differentiating between these gases is crucial for achieving large-scale, energy-efficient He/H2 separation. However, the limited selectivity of current membranes has hindered their practical application. In this study, we propose a novel approach to overcome this challenge by engineering submicroporous membranes through the fluorination of partially carbonized hollow fibers. We demonstrate that the fluorine substitution on the inner rim of the micropore walls within the carbon hollow fibers enables tunability of the microporous architecture. Furthermore, it enhances interactions between H2 molecules and the micropore walls through the polarization and hydrogen bonding induced by C-F bonds, resulting in simultaneous improvements in both He/H2 diffusivity and solubility selectivities. The fluorinated HFM-550-F-1 min membrane exhibits exceptional mixed-gas separation performance, with a binary mixed-gas He/H2 selectivity of 10.5 and a ternary mixed-gas He/(H2+CO2) selectivity of 20.8, at 40 bar feed pressure and 35 °C, surpassing all previously reported polymer-based gas separation membranes, and remarkable plasticization resistance and long-term continuous stability over 30 days.

9.
Foods ; 13(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672861

RESUMO

Sunflower seeds, oil, and protein powder are rich in nutritional value, but the quality of different varieties of sunflower seeds is quite different, and the comprehensive comparative analysis characteristics of edible and oil sunflower seeds are still unclear. The comprehensive analysis and comparison of the raw material indicators, physicochemical properties, and processing characteristics of four edible and four oil sunflower seed varieties were investigated. The results showed that the engineering properties, texture characteristics, single-cell structure, and oil, protein, and starch granule distribution were different between edible and oil sunflower seeds. The composition of fatty acids and amino acids was different among edible, oil sunflower seeds and different varieties. The oleic acid (18.72~79.30%) and linoleic acid (10.11~51.72%) were the main fatty acids in sunflower seed oil, and in amino acid composition, the highest content was glutamic acid (8.88~11.86 g/100 g), followed by aspartic acid (3.92~4.86 g/100 g) and arginine (4.03~4.80 g/100 g). Sunflower meal proteins were dominated by 11S globulin and 2S albumin, and the secondary structure was dominated by ß-folding, with -SH and S-S varying greatly among different varieties. Sunflower meal proteins vary widely in terms of functional properties among different varieties, and specialized quality screening was necessary. This study provided a reference and theoretical support for understanding sunflower seeds to further promote the processing and utilization of sunflower seeds.

10.
Cancer Lett ; 593: 216841, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614385

RESUMO

Aerobic glycolysis accelerates tumor proliferation and progression, and inhibitors or drugs targeting abnormal cancer metabolism have been developing. Cancer stem-like cells (CSCs) significantly contribute to tumor initiation, metastasis, therapy resistance, and recurrence. Formyl peptide receptor 3 (FPR3), a member of FPR family, involves in inflammation, tissue repair, and angiogenesis. However, studies in exploring the regulatory mechanisms of aerobic glycolysis and CSCs by FPR3 in gastric cancer (GC) remain unknown. Here, we demonstrated that overexpressed FPR3 suppressed glycolytic capacity and stemness of tumor cells, then inhibited GC cells proliferation. Mechanistically, FPR3 impeded cytoplasmic calcium ion flux and hindered nuclear factor of activated T cells 1 (NFATc1) nuclear translocation, leading to the transcriptional inactivation of NFATc1-binding neurogenic locus notch homolog protein 3 (NOTCH3) promoter, subsequently obstructing NOTCH3 expression and the AKT/mTORC1 signaling pathway, and ultimately downregulating glycolysis. Additionally, NFATc1 directly binds to the sex determining region Y-box 2 (SOX2) promoter and modifies stemness in GC. In conclusion, our work illustrated that FPR3 played a negative role in GC progression by modulating NFATc1-mediated glycolysis and stemness in a calcium-dependent manner, providing potential insights into cancer therapy.


Assuntos
Proliferação de Células , Glicólise , Células-Tronco Neoplásicas , Transdução de Sinais , Neoplasias Gástricas , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/metabolismo , Receptores de Lipoxinas/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética
11.
Langmuir ; 40(14): 7769-7780, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551319

RESUMO

Polymer vitrimer is a novel material that contains dynamic covalent bonds (DCBs) allowing it to combine the desirable characteristics of both thermoplastics and thermosets. Similar to the traditional polymer nanocomposites, introducing nanoparticles into polymer vitrimer is also an effective strategy to further enhance its properties. However, a comprehensive understanding of matrix and interfacial bond exchange reactions (BERs) to tailor the properties of polymer vitrimer nanocomposites (PVNs) is still lacking. Herein, we utilized coarse-grained molecular dynamics simulations to investigate model PVNs in which there are two different kinds of DCBs in the vitrimer matrix and at the interface. Our results show that the normalized bond autocorrelation function (Csw) confirms the independence of BERs in the vitrimer matrix and in the interface. By varying the bond swap energy barrier (ΔEsw) in the matrix ΔEswmat or in the interface ΔEswint, or in both ΔEswall, a maximum mechanical property is observed at the moderate value of ΔEswmat, ΔEswint, orΔEswall. Meanwhile, the effect of ΔEsw on the stress relaxation and the bond orientation as a function of the time under a fixed strain is well probed, which both decay more slowly at greater ΔEsw. We simulated the tension-recovery curve to examine the effect of ΔEsw on the hysteresis loss and permanent deformation of PVNs, finding an optimal value to achieve its minimum energy dissipation and maximum recovery ratio. Lastly, we investigated the efficiency of self-healing by building and removing walls from the system. Interestingly, a maximum self-healing efficiency of the stress-strain behavior is observed at moderate ΔEsw. Overall, this study provides valuable insights into the relationship between the structure and properties of PVNs, offering implications for the manipulation of their mechanical properties and enhancement of their self-healing capabilities.

12.
J Nat Med ; 78(3): 474-487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431911

RESUMO

Lupus nephritis (LN) is a kidney disease that occurs after systemic lupus erythematosus (SLE) affects the kidneys. Pentraxin 3 (PTX3) is highly expressed in the serum of patients with LN. Renal PTX3 deposition is directly related to clinical symptoms such as proteinuria and inflammation. The excessive proliferation of mesangial cells (MCs) is one of the representative pathological changes in the progression of LN, which is closely related to its pathogenesis. Protopanaxadiol (PPD) is the main component of ginsenoside metabolism and has not been reported in LN. The aim of this study was to investigate the relationship between PTX3 and mesangial cell proliferation and to evaluate the potential role and mechanism of PPD in improving LN. PTX3 is highly expressed in the kidneys of LN patients and LN mice and is positively correlated with renal pathological indicators, including proteinuria and PCNA. The excessive expression of PTX3 facilitated the proliferation of MCs, facilitated the activation of the MAPK/ERK1/2 signaling pathway, and increased the expression of HIF-1α. Further studies showed that PPD can effectively inhibit the abnormal proliferation of MCs with high expression of PTX3 and significantly improve LN symptoms such as proteinuria in MRL/lpr mice. The mechanism may be related to the inhibition of the PTX3/MAPK/ERK1/2 pathway. In this study, both in vitro, in vivo, and clinical sample results show that PTX3 is involved in the regulation of MCs proliferation and the early occurrence of LN. Natural active compound PPD can improve LN by regulating the PTX3/MAPK/ERK1/2 pathway.


Assuntos
Proteína C-Reativa , Nefrite Lúpica , Sistema de Sinalização das MAP Quinases , Sapogeninas , Componente Amiloide P Sérico , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/metabolismo , Animais , Sapogeninas/farmacologia , Proteína C-Reativa/metabolismo , Camundongos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Feminino , Componente Amiloide P Sérico/metabolismo , Proliferação de Células/efeitos dos fármacos , Adulto , Masculino , Camundongos Endogâmicos MRL lpr , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia
13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 320-325, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538364

RESUMO

Cardiac arrest (CA) is a serious cardiac event, which has a high incidence and low survival rate at home and abroad. In order to predict the risk of CA in advance, a large number of studies have been conducted by relevant researchers. This paper mainly summarizes the characteristics and research status of the existing analysis and prediction of CA from three aspects: the risk prediction factors of CA, the evaluation index of risk prediction of CA and the early warning scoring system of CA. We hope it can help medical staff to understand the current progress in this field, and provide new ways and methods for predicting the risk of CA.


Assuntos
Parada Cardíaca , Humanos , Coração , Incidência , Estudos Retrospectivos
14.
Gut Microbes ; 16(1): 2307542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319728

RESUMO

The gut microbiota and Short-chain fatty acids (SCFAs) can influence the progression of diseases, yet the role of these factors on gastric cancer (GC) remains uncertain. In this work, the analysis of the gut microbiota composition and SCFA content in the blood and feces of both healthy individuals and GC patients indicated that significant reductions in the abundance of intestinal bacteria involved in SCFA production were observed in GC patients compared with the controls. ABX mice transplanted with fecal microbiota from GC patients developed more tumors during the induction of GC and had lower levels of butyric acid. Supplementation of butyrate during the induction of gastric cancer along with H. pylori and N-methyl-N-nitrosourea (MNU) in WT in GPR109A-/-mice resulted in fewer tumors and more IFN-γ+ CD8+ T cells, but this effect was significantly weakened after knockout of GPR109A. Furthermore, In vitro GC cells and co-cultured CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells, as well as in vivo tumor-bearing studies, have indicated that butyrate enhanced the killing function of CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells against GC cells through G protein-coupled receptor 109A (GPR109A) and homologous domain protein homologous box (HOPX). Together, these data highlighted that the restoration of gut microbial butyrate enhanced CD8+ T cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC carcinogenesis, which suggests a novel theoretical foundation for GC management against GC.


Assuntos
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Camundongos , Animais , Butiratos/metabolismo , Microbioma Gastrointestinal/fisiologia , Linfócitos T CD8-Positivos , Ácidos Graxos Voláteis/metabolismo , Ácido Butírico , Claudinas
15.
J Med Chem ; 67(2): 1243-1261, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176026

RESUMO

IDO/TDO/Kyn/AhR signaling plays a crucial role in regulating innate and adaptive immunity, and targeting Ah receptor (AhR) inhibition can potentially redirect immune cells toward an antitumoral phenotype. Therefore, AhR is an attractive drug target for novel small molecule cancer immunotherapies. In this study, natural products tanshinolic A-D (1-4), the first adducts composed of ortho-naphthoquinone-type tanshinone and phenolic acid featuring a unique 1,4-benzodioxan hemiacetal structure, were isolated and characterized from the roots of Salvia miltiorrhiza Bunge. Luciferase reporter gene assay revealed that these adducts exhibited significant AhR inhibitory activity. A linear strategy was developed to construct a cis-3,4-disubstituted 1,4-benzodioxan hemiacetal structure. Encouragingly, in both in vitro and in vivo experiments, (±)-13e demonstrated the ability to inhibit tumor cell proliferation, promote INF-γ secretion in CD8+ T cells, and inhibit PD-1/PD-L1 signal transduction, which could exert tumor inhibition properties by inhibiting AhR activity, positioning it as a promising candidate for tumor immunotherapy.


Assuntos
Neoplasias , Salvia miltiorrhiza , Humanos , Linfócitos T CD8-Positivos , Imunoterapia , Receptores de Hidrocarboneto Arílico , Salvia miltiorrhiza/química , Piperoxano/química , Piperoxano/farmacologia
16.
Nat Prod Res ; : 1-6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251834

RESUMO

Two new protopanaxadiol type sapogenins, (3ß,12ß)-3,12,20-trihydroxydammar-24-en-26-al (1) and (3ß,12ß)-3,12,20-trihydroxydammar-24-en-26-oic acid (2), were isolated from the alkali hydrolysate of stems-leaves of Panax notoginseng, along with seven known analogues (3-9). Their structures were elucidated by spectroscopic analyses and single-crystal X-ray diffraction. Compound 2 and the known sapogenins 5-8 displayed weak to moderate inhibition of NO production in LPS-induced RAW264.7 macrophages with IC50 values from 44.5 to 143.6 µM, respectively.

17.
Clin Pharmacokinet ; 62(11): 1581-1587, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713096

RESUMO

AIM: This study aimed to assess the pharmacokinetics of henagliflozin in dialysis patients with diabetes. METHODS: In this prospective, randomized, open-label study where 10 hemodialysis and 10 peritoneal dialysis patients with diabetes were randomized in a 1:1:1:1 ratio to oral administration of henagliflozin in doses of 5 and 10 mg/day. The pharmacokinetics of a single dose of henagliflozin on Days 1 and 2, the minimum plasma concentration (Cmin) of the steady state on Day 10, and single hemodialysis clearance of henagliflozin were measured. RESULTS: The mean values of Cmax were 70.2-77.0 ng/mL and 105-143 ng/mL in the 5 mg and 10 mg henagliflozin groups, respectively; the mean values of AUCinf were 777-811 h*ng/mL and 1290-1730 h*ng/mL in the 5 mg and 10 mg henagliflozin groups, respectively. The median Tmax values ranged from 1 to 3 h across the dose range. The mean values of T1/2 of henagliflozin were 14.1-14.5 and 16.2-21.0 h in the 5 mg and 10 mg groups, respectively. The Cmin values of the steady state in dialysis patients taking 5 mg and 10 mg of henagliflozin were 15.0 ± 4.4 ng/mL and 26.8 ± 16.3 ng/mL, respectively, which were 123.8% and 131.0% higher than those in diabetic patients with normal renal function, respectively. Henagliflozin concentration was decreased by 1.1% after hemodialysis treatment. No treatment-related serious adverse events or discontinuations occurred. CONCLUSIONS: Henagliflozin at the current recommended dosage may be safe, although it is possible to result in slight accumulation in patients on dialysis. REGISTRATION: Chinese Clinical Trial Registry number ChiCTR2200062872. The date of registration: August 22, 2022.


Assuntos
Diabetes Mellitus , Diálise Renal , Humanos , Estudos Prospectivos , Compostos Bicíclicos Heterocíclicos com Pontes , Área Sob a Curva
18.
iScience ; 26(8): 107346, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539033

RESUMO

Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFß1 expression and activates the TGFß1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.

19.
Small ; 19(43): e2302758, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381095

RESUMO

Innate immunity triggered by the cGAS/STING pathway has the potential to improve cancer immunotherapy. Previously, the authors reported that double-stranded DNA (dsDNA) released by dying tumor cells can trigger the cGAS/STING pathway. However, owing to efferocytosis, dying tumor cells are engulfed and cleared before the damaged dsDNA is released; hence, immunologic tolerance and immune escape occur. Herein, a cancer-cell-membrane biomimetic nanocomposites that exhibit tumor-immunotherapeutic effects are synthesized by augmenting the cGAS/STING pathway and suppressing efferocytosis. Once internalized by cancer cells, a combined chemo/chemodynamic therapy would be triggered, which damages their nuclear and mitochondrial DNA. Furthermore, the releasing Annexin A5 protein could inhibit efferocytosis effect and promote immunostimulatory secondary necrosis by preventing phosphatidylserine exposure, resulting in the burst release of dsDNA. These dsDNA fragments, as molecular patterns to immunogenic damage, escape from the cancer cells, activate the cGAS/STING pathway, enhance cross-presentation inside dendritic cells, and promote M1-polarization of tumor-associated macrophages. In vivo experiments suggest that the proposed nanocomposite could recruit cytotoxic T-cells and facilitate long-term immunological memory. Moreover, when combined with immune-checkpoint blockades, it could augment the immune response. Therefore, this novel biomimetic nanocomposite is a promising strategy for generating adaptive antitumor immune responses.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteínas de Membrana/metabolismo , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Neoplasias/terapia , DNA , Membrana Celular/metabolismo , Imunoterapia/métodos
20.
Antiviral Res ; 216: 105659, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37369283

RESUMO

BACKGROUND: COVID-19 causes significant mortality during the recent pandemic. Data regarding the effectiveness of Paxlovid on COVID-19 patients with chronic kidney disease (CKD, eGFR <90 ml/min) are limited. METHODS: A retrospective cohort study was performed on the clinical data of the hospitalized adult patients with confirmed COVID-19 infection collected at Renji Hospital from April 7, 2022 to June 21, 2022. The association of Paxlovid treatment with early (within 5 days post diagnosis) or late (5 days or later post diagnosis) initiation time with clinical outcomes was assessed by Cox proportional hazards regression model with time-dependent covariates. RESULT: 1279 of 2387 enrollees were included in the study. Patients with early initiation of Paxlovid had a lower all-cause death rate compared to those with late initiation or without Paxlovid treatment (P = 0.046). For the CKD patients with Charlson comorbidity index (CCI) > 7, the early initiation of Paxlovid was associated with a lower all-cause death rate compared to the later initiation or the lack of Paxlovid treatment (P = 0.041). Cox regression analyses revealed that eGFR (HR 4.21 [95%, CI 1.62-10.99]), Paxlovid treatment (0.32 [0.13-0.77]), CCI (4.32 [1.64-11.40]), ICU admission (2.65 [1.09-6.49]), hsCRP (3.88 [1.46-7.80]), chronic liver disease (4.02 [1.09-14.85]) were the independent risk factors for all-cause death for CKD patients after adjusting for demographics and biochemical indexes. CONCLUSIONS: All-cause death, invasive ventilation, and ICU admission were all significantly lowered by an early initiation of Paxlovid treatment in COVID-19 patients with severe CKD.


Assuntos
COVID-19 , Insuficiência Renal Crônica , Adulto , Humanos , COVID-19/complicações , Estudos Retrospectivos , Insuficiência Renal Crônica/complicações , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...